
Logic-Based Subsumption Architecture

Eyal Amir a,1 Pedrito Maynard-Zhang b,2

aStanford University, Computer Science Department, Stanford, CA 94305-9020, USA
bMiami University, Computer Science & Systems Analysis Department, Oxford, OH

45056, USA

Abstract

We describe a logic-based AI architecture based on Brooks’ subsumption architecture. In
this architecture, we axiomatize different layers of control in First-Order Logic (FOL) and
use independent theorem provers to derive each layer’s outputs given its inputs. We imple-
ment the subsumption of lower layers by higher layers using nonmonotonic reasoning prin-
ciples. In particular, we use circumscription to make default assumptions in lower layers,
and nonmonotonically retract those assumptions when higher layers draw new conclusions.
We also give formal semantics to our approach. Finally, we describe layers designed for the
task of robot control and a system that we have implemented that uses this architecture for
the control of a Nomad 200 mobile robot.

Our system combines the virtues of using the represent-and-reason paradigm and the
behavioral-decomposition paradigm. It allows multiple goals to be serviced simultaneously
and reactively. It also allows high-level tasks and is tolerant to different changes and elabo-
rations of its knowledge in runtime. Finally, it allows us to give more commonsense knowl-
edge to robots. We report on several experiments that empirically show the feasibility of
using fully expressive FOL theorem provers for robot control with our architecture and the
benefits claimed above.

1 Introduction

In (Brooks, 1986), Rodney Brooks provided a decomposition of the problem of
robot control into layers corresponding to levels of behavior, rather than a sequen-
tial, functional form. Within this setting, he introduced the idea of subsumption,
that is, that more complex layers not only depend on lower, more reactive lay-
ers, but could also influence their behavior. The resulting architecture was one that

1 E-mail: eyal.amir@cs.stanford.edu
2 E-mail: maynarp@muohio.edu

Preprint submitted to Elsevier Science 30 June 2003

could simultaneously service multiple, potentially conflicting goals in a reactive
fashion, giving precedence to high-priority goals.

Because of its realization in hardware, the subsumption architecture lacks declar-
ativeness, making it difficult to implement higher-level reasoning and making its
semantics unclear. The increasing hardware complexity with new layers introduces
scaling problems. And, relying on hardware specifications, the architecture is specif-
ically oriented towards robot control and is not applicable to software-based intelli-
gent agents. The problem of extending similar architectures to more complex tasks
and goals and to agents that are not necessarily physical has already been raised
and discussed in general terms by (Minsky, 1985) and (Stein, 1997), but to our
knowledge, no practical AI architecture has been developed along these lines.

In this paper we describe an architecture that is modeled in the spirit of Brooks’ sub-
sumption architecture but relies on a logical framework and has wider applicability
and extensibility in the manner described above. Our Logic-Based Subsumption
Architecture (LSA) includes a set of First-Order Logic (FOL) theories, each cor-
responding to a layer in the sense of Brooks’ architecture. Each layer is supplied
with a separate theorem prover, allowing the system of layers to operate concur-
rently. After proving a goal, each layer sends the result to lower layers. We use
nonmonotonic reasoning to allow layers to make default assumptions. These as-
sumptions may be subsumed when information arrives from higher layers or from
the agent’s sensors. This allows each layer’s performance to be independent of the
performance of other layers, supporting reactivity. We also use nonmonotonic rea-
soning to provide semantics for the combined (static) system.

The benefits of our system are the results of combining the direct use of logical
theories with a procedural-behavioral overall structure. In particular, the benefits of
using logical theories directly are those that are found when comparing the declar-
ative approach with the procedural approach to building intelligent systems (e.g.,
(Levesque and Brachman, 1985)). A declarative system can receive advice at run-
time, is easily extensible and reusable, and is more understandable to the outside
observer. There is no need to aim for a specific application when designing the
theories involved in the system. Our choice of FOL as the basic representation
language allows the system to use varying representations of knowledge that are
taken from different streams in AI, including some that require elaborate logical
languages and axioms, such as probability theory, frame systems, set theory, and
utility theory. With little additional axioms, we can include information that is both
quantitative and qualitative. Thus, our system uses a single representational and
reasoning mechanism to capture all parts of the complex system while keeping the
overall behavior fast. Finally, our system allows adding layers that reason explic-
itly about recommended inference, relying on theories such as those in (Russell and
Wefald, 1989).

The architecture has been implemented and tested on a mobile robot. It exhibits

2

real-time performance and performs navigation and control tasks. The layers can
receive and incorporate new axioms from the user at run-time, allowing the user to
give advice to the robot and to correct behaviors that are erroneous (much in the
spirit of the Advice Taker of (McCarthy, 1958)). The architecture also allows incor-
porating layers that perform diagnosis and can be extended to layers that remember
experiences for other layers. Our experiments show that real-time commonsense
control of AI agents can be achieved with an architecture based on logical theories
and general-purpose theorem provers with the use of subsumption. These theorem
provers can be replaced with special-purpose reasoners, for improved efficiency,
but we show that in simple cases this is not needed with current theorem-proving
technology. We report on the set of experiments that we executed with this system
on a Nomad200 mobile robot.

This work improves over results presented using GOLOG (e.g. (Levesque et al.,
1997)) and the work of (Shanahan, 1996) in that our system is fully declarative and
has the full expressiveness of FOL. We provide a more detailed comparison to these
and other related work at the end of the paper.

Some of the results in this paper appeared previously in (Amir and Maynard-Reid
II, 1998; Amir and Maynard-Reid II, 1999; Amir and Maynard-Reid II, 2001).
(Note, that the second author’s surname in the corresponding proceedings was
Maynard-Reid II.)

2 Principles of Subsumption Architectures

2.1 Brooks’ Subsumption Architecture

Brooks (Brooks, 1986) showed that it is often advantageous to decompose a sys-
tem into parallel tasks or behaviors of increasing levels of competence rather than
the standard functional decomposition. Whereas a typical functional decomposition
might resemble the sequence

sensors → perception → modeling → planning → task recognition → motor
control,

Brooks would decompose the same domain as

avoid objects < wander < explore < build maps < monitor changes < identify
objects < plan actions < reason about object behavior

where < denotes increasing levels of competence. Potential benefits from this ap-
proach include increased robustness, concurrency support, incremental construc-
tion and ease of testing.

3

An underlying assumption is that complex behavior can be the product of many
simple behaviors interacting with each other and a complex environment. This fo-
cus on simplicity leads to a design where each individual layer is composed of
simple state machine modules operating asynchronously without any central con-
trol.

feelforce runaway turn

forward

avoid

wander

collide

sonar

heading

turn

fwd

Object

wander_heading

halt

encoders

sensor_readings

robot

headingforce

robot

robot

S
speed

Layer 1

Layer 0

Fig. 1. Layers 0 and 1 of Brooks’ subsumption architecture robot control system.

In general, the different layers are not completely independent. In the decompo-
sition above, wandering and exploring depend on the robot’s ability to avoid ob-
jects. But the system may be able to service multiple goals in parallel, despite the
dependence. The goals of one layer will occasionally conflict with those of an-
other layer, in which case higher-priority goals should override lower-priority ones.
Consequently, the subsumption architecture provides mechanisms by which higher,
more competent layers may observe the state of lower layers, inhibit their outputs
and override their inputs, thus adjusting their behavior. High-priority tasks in lower
layers (such as reflexively halting when an object is dead ahead) will still have a
default precedence if the designer disallows any tampering with these particular
tasks.

Following Brooks’ work and others (e.g., see (Arkin, 1998)) there has been much
work on implementing behavior-based robots when the different behaviors are sim-
ply switched by an automaton or are stacked in a subsumption architecture. In the
latter, layers typically avoid intervening with the internals of layers below, opting
to inhibit the output of lower layers, replacing it with the higher layer’s output.

Brooks implemented a control system of layers corresponding to the first three
levels of competence described above (avoidance, wandering and exploration). The
first two layers are shown in Figure 1. The avoid layer endows the robot with
obstacle avoidance capabilities by moving it in directions that avoid obstacles as
much as possible and forcing it to stop if a head-on collision is imminent. The
wander layer causes the robot to move around aimlessly when it is not otherwise
occupied.

The avoid layer accepts sonar readings of the robot’s surroundings into its sonar
module which outputs a map of the vicinity based on these readings. The collide
module checks if there is an obstacle directly ahead and, if there is, forces the robot

4

to stop regardless of what other modules are doing. The feelforce module uses
the map to calculate a combined repulsive “force” that the surrounding objects
exert on the robot. The runaway module checks if this force is significant enough
to pay attention to and, in the case that it is, determines the new heading and speed
for the robot to move away from the force. The turn module commands the robot
to make the required turn, then passes the speed on to the forward module which,
if not in a halt state, commands the robot to move forward with the specified speed.
The further away the robot gets, the smaller the speed computed by the runaway
module.

Every so often, the wander module chooses a new random direction for the robot
to move in. The avoid module combines it with the output of the avoid layer’s
feelforce module, computing an overall heading that suppresses the input to the
avoid layer’s turn module.

The explore layer gives the robot some primitive goal-directed behavior by peri-
odically choosing a location in the distance and heading the robot towards it if idle.
While in explore mode, this layer inhibits the wander layer so that the robot re-
mains on track towards its destination. When either the wander or the explore
layer is active, it overrides the default heading computed by the avoid layer, but
the avoid layer still ensures that the robot does not have a collision. We refer the
reader to (Brooks, 1986) for further details.

2.2 Behavioral Decomposition

The first important idea we borrow from Brooks’ architecture is that of decompos-
ing the domain along behavioral lines rather than along the standard, sequential
functional lines. A Logic-Based Subsumption Architecture (LSA) is composed of
a sequence of FOL theories. Each represents a layer with an axiomatization of the
layer’s behavior, that is, the layer’s inputs, outputs (goal), state and any dependen-
cies between them. The inputs are axioms coming from either the sensors or higher
layers. The outputs are proved theorems determined by running a separate theorem
prover for that layer only. These outputs may be sent to lower layers or to the robot
effectors.

Because the axiomatization of a layer is usually much smaller than that of the whole
system, each cycle is less computationally expensive than running one theorem
prover over the whole compound axiomatization, leading to an overall higher per-
formance (we verified this claim experimentally with the PTTP theorem prover).
Another advantage of the layer-decoupling is the possibility of achieving more re-
active behavior. As in Brooks’ system, lower layers controlling basic behaviors are
trusted to be autonomous and do not need to wait on results from higher layers
(they assume some of them by default) before being able to respond to situations.

5

Because these layers typically have simpler axiomatizations, and given the default
assumptions, the cycle time to compute their outputs can be shorter than that of the
more complex layers.

2.3 Subsumption Principles

Of course, the layers are not fully independent. We adopt the view that, together
with the task-based decomposition idea, the coupling approach represented by sub-
sumption in the subsumption architecture is an important and natural paradigm for
intelligent agents in general, and robot control in particular (see (Stein, 1997)). We
want each layer in an LSA to be able to communicate with those underneath it in
the hierarchy.

In general, however, when one layer overrides another, the two disagree on what
some particular input should be. In a classical logic setting, the two corresponding
theories will be inconsistent. We need to formalize the higher-layer theory’s prece-
dence over the lower layer’s in such a way that (a) if there is no conflict, both layers
keep their facts and the higher layer asserts its relevant conclusions in the lower
layer, and (b) if there is conflict, the lower layer tries to give up some assumptions
to accommodate the higher layer’s conclusions. A number of techniques developed
in the logic community are applicable, e.g., nonmonotonic techniques and belief
revision. We have chosen to use circumscription, although other approaches may
be equally interesting and appropriate.

3 Logic-Based Subsumption

This section describes how we implement the principles discussed above. Follow-
ing Brooks, the architecture decomposes a domain along behavioral lines into sim-
ple layers. But, unlike systems that followed Brooks’ work, it allows the layers to
work in synergy to produce the compound behavior.

3.1 Basic Machinery

A Logic-Based Subsumption Architecture (LSA) is built of layers corresponding to
behaviors (see Figure 2). The layers work concurrently and asynchronously with
respect to each other.

We distinguish four parts of a logical layer: (1) the body of the layer, (2) the sensory
and input Latches, (3) the output, and (4) the default assumptions. The body of the
layer is a fixed axiomatization describing the behavior of that layer. The latches are

6

used to accept input axioms from the sensors and from higher layers and replace
them at the beginning of every cycle (rather than accumulate this input). The out-
put is a fixed set of goal sentences (possibly with some free variables) whose proof
and instantiation determine the behavior sanctioned by the layer’s theory (includ-
ing the latches axioms). The default assumptions are used to implement the idea of
subsumption between layers. These assumptions are implemented using nonmono-
tonic reasoning methods, which we describe in more detail in Section 3.2.

Theory 1

Theory 0Sensors Effectors

Fig. 2. An abstract diagram of the LSA.

Each layer is equipped with a theorem prover and concurrently running its own
processing loop. The processing loop of each layer proceeds as follows: First, col-
lect any pertinent sensor data and assert it in the form of logical axioms. Simulta-
neously, assert any inputs from higher-level theories. The theorem prover of that
layer then attempts to prove the layer’s goal, from the theory including the default
assumptions. Upon proving its goal, the layer transmits the goal instantiation to the
layer below or (in the case of the lowest layer) to the robot manipulators.

We will typically include a form of nonmonotonicity that is not computationally
expensive or that is a fast approximation for a more computationally demanding
form of nonmonotonicity. Using a fast form of nonmonotonicity for implementing
default assumptions and having simpler axiomatizations for the lower layers, the
cycle time to compute these layers’ outputs can be significantly shorter than that of
more complex layers.

3.2 Circumscription-Based Subsumption

We use nonmonotonic reasoning to introduce defaults for each layer. Without non-
monotonicity in each layer, goals that were proved once without input from higher
layers cannot be rejected upon the introduction of new axioms arriving from higher
layers.

An example of a suitable nonmonotonic-reasoning system, is McCarthy’s circum-
scription (McCarthy, 1986) formula:

Circ[A(P,Z); P ; Z] = A(P,Z) ∧ ∀p, z (A(p, z)⇒ ¬(p < P))

7

It says that in the theory A, with parameter relations and function sequences P,Z,
P is a minimal element such that A(P,Z) still holds while Z is allowed to vary
in order to allow P to become smaller. Roughly speaking, adding this formula
allows us to say that the predicate P is true for only those elements for which
it must be true. In other words, P is false by default. To state more complicated
defaults one can add axioms and predicates. For example, if we want to say that
P is true by default, then we can add a new predicate symbol, P ′, and the axiom
∀x P (x) ⇐⇒ ¬P ′(x), and minimize P ′ in the circumscription formula.

Take, for example, the theory

A ≡ block(B1) ∧ block(B2)

The circumscription of block in A, varying nothing, is Circ[A; block;] = A ∧
∀p [A[block/p] ⇒ ¬(p < block)] and is equivalent to ∀x (block(x)⇔ (x = B1∨x =
B2)). By minimizing block, we have concluded that there are no other blocks in the
world besides those mentioned in the original theory A.

To implement the idea of subsumption, we let each layer make default “assump-
tions” about the inputs that later may be adjusted by other (higher-level) layers.
These assumptions typically take the form of the Closed-World Assumption (CWA)
by minimizing a predicate in the layer’s input language (Extended CWA, a gener-
alization of CWA, was shown to be equivalent to circumscription (Gelfond et al.,
1989)).

More formally, for a set of axioms, A, let L(A) be the set of nonlogical symbols
(predicates, functions, and constants) that appear in A. Also, let L(A) be the FOL
language built using the symbols in L(A) (a language here is the set of all FOL sen-
tences that can be built from those symbols). Let Layeri be the combined theory
of layer i, i.e., the combination of the body axioms, Basei, the sensory-latch ax-
ioms, Sensorsi, and the input-latch axioms, Inputi. Let

−→
C i be a set of predicates

in L(Layeri) for which we wish to assert CWA. Then, subsumption is achieved for
layer i by using the parallel circumscription policy

Circ[Layeri;
−→
C i; L(Layeri)] (1)

When implemented, this formula often can be replaced with a simple (external to
the logic) mechanical interference determining the value of the minimized predi-
cates; we discuss this issue in section 6. Other systems for nonmonotonic reasoning
can also be used instead of circumscription, depending on the intended behavior
and the designer’s choice of tradeoffs (e.g., time versus expressivity).

8

3.3 Putting It All Together

Each layer tries to prove

Circ[Layeri;
−→
C i;
−→
Z i] |= ∃

−→x Goali(
−→x)

Here,
−→
C i,
−→
Z i are specified as part of the defaults for layer i, Layeri is the set of

axioms including the body and the latches and Goali(
−→x) is a goal formula specified

for layer i (−→x is a vector of variables open in Goali(
−→x)). Upon proving Goali(

−→a),
the layer transmits Goali(

−→a) either to the layer below or (in the case of the lowest
layer) to the robot manipulators. Figure 3 summarizes this algorithm, while Figure
4 illustrates the process.

PROCEDURE LSA({Layeri}i≤n, {Goali}i≤n)

{Layeri}i≤n a layered theory T , Goali a fixed goal in L(Layeri) (i ≤ n).

Concurrently, for each layer, i:
(1) Request sensory data from the robot and assert it into the sensory latch,

Sensorsi.
(2) Combine axioms in the Body theory with those in the sensory and input

latch: Layeri ← Basei ∪ Sensorsi ∪ Inputi.
(3) Try to prove Circ[Layeri;

−→
C i;
−→
Z i] |= ∃

−→x Goali(
−→x) (try to prove the goal

from Layeri given the default assumptions).
(4) If Goali(

−→a) was proved for assignment −→a , assert Goali(
−→a) in the input

latches of layer i− 1, Inputi−1.

Fig. 3. The LSA algorithm.

Action
Sensors

Output

Sensors
Output

Destination
Seek

Obstacles
Sensors L1 input

L2 input

Goal 1

Avoid
L0PSfrag replacements

Sensor Data

Actions

Fig. 4. A detailed look at two layers.

This description of LSA hides two issues: First, what happens when a layer cannot
prove something? Second, what happens to the input latch of a receiving layer
after some time has passed? For the first question, in general we assume that the
theorem prover for each layer works without interruptions until it finds a proof.
If the theorem prover has not found a proof after some pre-specified time period,
we restart the prover (possibly on a different sub-space of the search space) with
the new latch information. Alternatively, one can assume that the sensory latch and

9

the input latch are refreshed asynchronously, and the prover immediately takes any
new information into account, discarding any old information from that latch (and
any of the consequences it may have made on the basis of the old latches). For the
second question, we assume in this paper that latch information disappears after
some time. Thus, if layer 1 has not proven its goal in the last few seconds, then
layer 0 will no longer consider an axiom sent previously by layer 1 as valid.

4 Static Semantics for LSA

In the previous section we showed how we use circumscription to implement sub-
sumption. We also use circumscription to give semantics to the system of layers as
one big logical system. Specifically, it is needed to give semantics to the directional
nature of the complete system (i.e., that messages between layers go only in one
direction).

An LSA system has layers that are asynchronous and acting in a changing world.
There is also a discrepancy between sensing and acting, as the action is never exe-
cuted in exactly the same world in which the sensing was done. Also, information
collected by the sensors is always imprecise. We do not try to model these here. In
this section we assume that sensing and acting is done in a stationary world (i.e.,
that the robot is not allowed to act before the formula in Definition 4.1 is computed).

If we ignore the time differences between the theorem provers in different layers
and consider the entire system of layers as one logical theory, we can give the
system a simple semantics. In what follows we are interested in the output of the
system to the actuators of the robot.

Let Layeri be the theory of layer i, and assume that we use first-order circumscrip-
tion to assume defaults for layer i. We include any default as a FOL schemata. Let
Goali(

−→x) be the goal formula of layer i (i.e., the formula that we try to prove in
that layer). We call such a system of layers, T , a layered theory. Let T have n + 1
layers (i.e., layers are numbered 0, ..., n). For i ≤ n, ϕ ∈ L(Layeri), we write
T ` ϕ if the mechanical entailment we described above derives ϕ in step 3 (for any
layer j ≤ n).

Definition 4.1 (Output Semantics for Layered Theories) M is a model of the
layered theory T (writtenM |= T) iff it is a first-order model of

Circ[Layer0 ∪ Circ[Layer1 ∪ ...;
−→
C 1;
−→
Z 1];
−→
C 0;
−→
Z 0]

where
−→
Z i = L(

⋃n
j=i Layerj), and

−→
C i is taken as in formula (1).

We assume that L(Layeri)∩L(Layerj) includes no predicate symbols if i 6= j and
i 6= j + 1, and that the predicate symbols that appear in L(Layeri) ∩ L(Layeri+1)

10

appear also in Goali+1(
−→x).

Let T be a layered theory with n + 1 layers, 0, ..., n, and assume that for every
i ≤ n, Goali(

−→x) is a single literal. The LSA obeys this semantics, assuming that
transferring a single instantiation of the goal between any pair of layers is sufficient
(i.e., that the only prime implicate of Layeri+1 in L(Goali+1) is a single literal).
In case one layer proves only a disjunction of goal instantiations, we need to refine
LSA to support such a transfer, but this refinement can be done for any fixed size
of disjunctions.

We borrow a technical result due to (Amir, 2002) which presents an interpolation
theorem for circumscription.

Theorem 4.2 Let T1, T2 be two theories, P,Q vectors of symbols in L(T1)∪L(T2)
such that P ⊆ L(T1) and P ∪ Q ⊃ L(T2). Let γ be the set (possibly infinite)
of prime implicates of T2 in L(L(T1) ∩ L(T2)) (or a logically equivalent set of
sentences). Then, for every ϕ ∈ L(T1),

Circ[T1 ∪ γ; P ; Q] |= ϕ ⇐⇒ Circ[T1 ∪ T2; P ; Q] |= ϕ

Corollary 4.3 (Interpolation Theorem for Circumscription) Let T be a theory,
P,Q vectors of symbols in L(T) such that (P ∪ Q) ⊇ L(T), P ⊆ L(ϕ). Then, if
Circ[T ; P ; Q] |= ϕ, then there is a set of sentences γ ⊂ L(T) ∩ L(ϕ) such that

T |= γ and Circ[γ; P ; Q] |= ϕ.

Furthermore, this holds if γ is chosen to be the set of prime implicates of T in
L(T) ∩ L(ϕ).

We now show that the LSA obeys the proposed semantics.

Theorem 4.4 (Output Completeness) Assume that T = {Layeri}i≤n is a layered
theory and ϕ ∈ L(Layer0). If T |= ϕ, then there is k ≥ 0 and a sequence of

sentences ϕk, . . . , ϕ0 such that ϕ = ϕ0, Circ[Layerk;
−→
C k;
−→
Z k] |= ϕk, and for all i

such that 0 ≤ i < k, ϕi includes predicate symbols only from L(Goali) and

Circ[Layeri ∪ {ϕi+1};
−→
C i;
−→
Z i] |= ϕi.

PROOF See Appendix A.1.

Theorem 4.5 (Output Soundness) Assume that there are sets of formulae ϕn, ..., ϕ0

such that Circ[Layern;
−→
C n;
−→
Z n] |= ϕn and for all i such that 0 ≤ i < n, ϕi is the

set of prime implicates of Circ[Layeri∪ϕi+1;
−→
C i;
−→
Z i] in L(Goali)∪Lf (Lf is the

set of function and constant symbols in T). Then, T |= ϕ0.

PROOF See Appendix A.2.

11

5 Logical Layers for a Mobile Robot

In this section we describe the logical the-

Fig. 5. Nomad 200

ories used in a control system we have im-
plemented for a Nomad200 mobile robot
operating in a multi-story office building.
The Nomad200 is a cylindrical robot with
sonar sensors on its perimeter, wheels that
control its motion, and encoders that com-
pute an estimate of the robot’s position
and angular heading (see Figure 5).

The system includes five logical layers. A
schematic view of the combined system
is given in Figure 6. Each layer’s body
theory contains three main types of ax-
ioms: sensory-focused, goal-focused, and
domain-dependent relationships in the world.
We describe these theories, the default as-
sumptions made by each associated theorem prover, and the goal each prover at-
tempts to prove.

We follow the convention that constant, function, and predicate names use all
lower-case letters, whereas variable names have at least the first letter capitalized.
For the sake of clarity, we describe our axioms using a standard first-order logic
notation. The translation into the notation of our PTTP/Prolog theorem prover is
straightforward, with a couple of notable exceptions:

• We must skolemize existentially quantified variables to satisfy PTTP’s require-
ment that all sentences be represented as clauses.

• For most functions and non-numeric constants, we use predicates. This is to ac-
commodate PTTP’s limited ability to handle equality. PTTP handles equality
(“=”) by a unification test. Thus, = means unifiable, and =\= means not unifi-
able. Thus, we restrict the use of equality to cases where the unification test is a
correct mechanism for testing equality or when equality is tested between arith-
metic terms that can be evaluated at the time of the equality test. This gives rise
to the modeling choices of replacing functions and constants with predicates. For
example, we model the number pi (π) using the PTTP sentence

pi(3.14159), not pi(C0) :−CO =\= 3.14159

instead of pi = 3.14159.

We include the complete theories in the actual PTTP (clausal-like) notation in Ap-
pendix B for the interested reader. (The beginning of the appendix also contains an

12

Goal−1

L−1

Sensors
Output

Robot

Goal 0

Halt
Robot

Sensors

Sensors
Output

Sensors

Domain
Planning

Destination
Seek

Obstacles

Goal 3

Goal 2

Goal 1

Avoid
L0

L1

L2

Output

L2 input

L3 input

Output

Sensors Planning
MotionL4 input

L3

Input
Li

Layer

Output

Output

Sensors

Sonar and Odometry Actions

L1 input

L0 input

Fig. 6. Diagrammatic view of an LSA system controlling a robot.

introduction to PTTP’s syntax.)

5.1 Layer 3: Wide Range Motion-Planning

The top layer, Layer 3, is responsible for high-level robot motion planning. The
theory can be seen as comprising three main parts: goal-focused, sensory-focused
and spatial relationships in the world. The following description uses predicates,
functions and constant symbols that are identical to those used in the implemented
theory. The complete theory and an index of its symbols appear in Appendices B.1
and B.2.

The goal-focused part represents the effects of robot motions in situation calcu-
lus. There is only one fluent, the robot’s landmark, and only one action schema,
moveto(L), where L is a landmark variable. For this simple situation calculus the-
ory it is convenient to consider the actions as having duration and the situations
as histories of actions from the initial situation, S0. This theory has a single effect
axiom:

∀L0, L, S. at(r, L0, S) ∧ vConnected(L0, L)⇒ at(r, L, result(moveto(L), S)).

13

(cf. Appendix B.2, formula 77 in the sample proof) where vConnected(L0, L)
means that there is a line of sight between L,L0. No frame axioms or explana-
tion closure axioms are needed, as this effect axiom specifies the value of the only
fluent in our theory.

s0 is considered to be the situation the robot is in when the layer receives the sen-
sory and other input axioms. The sensory-focused part of the theory includes a
representation of the relationships between landmarks in the world and the Carte-
sian coordinates supplied by the robot’s odometry sensors. For example, the robot
knows when it is between Cartesian positions of landmarks using the axiom

vConnected(L1, L2) ∧ curr loc(X,Y) ∧ cartesian(L1, C1)∧

cartesian(L2, C2) ∧ C1 6= C2 ∧ pos between(C1, [X,Y], C2)⇒

current landmark(between(L1, L2))

(cf. Appendix B.2, formula 45 in the sample proof) where [X,Y] is considered
between C1, C2 if it is close enough to the line crossing them (there is another
axiom that describes this), and curr loc(X,Y) is the Cartesian input from the robot
odometry.

Axioms for spatial relationships describe the relationships between rooms, room
entrances, corridors, floors and elevators. For example, rooms are visually linked to
their entrances, and landmarks that are in the same corridor are visually connected
as well. Other axioms describe invariants of the domain, such as the commutativity
of vConnected , and the fact that a position between two visually connected posi-
tions is visually connected to both positions.

It is important to notice that the landmarks in our domain designate regions in space
rather than specific cartesian positions in the world. For example,
current landmark(zero pt) holds if the robot is in the circle defined by the cen-
ter of zero pt and a radius defined by the predicate short distance(L1, L2). In
our current implementation the regions are not assumed to be exhaustive or dis-
joint. Thus, the robot may be in more than one landmark or none at all. The first
choice does not interfere with our system, and the second did not raise problems in
our experiments.

The goal for this layer is proving target landmark(L) (with L a variable that gets
instantiated in the proof) from this theory, the message
goal location(corridor2 cross) (received from Input Layer) and the sensory infor-
mation (curr loc(0, 0) and others). For efficiency, we find the proof in four stages.
First, we find a landmark at which the robot is (proving at(r, L, s0), with L a free
variable that gets instantiated in the proof) 3 .

3 The “Wff#” in the layer-proofs in this section refer to the index of the axiom used to
derive the consequence. Every such index is given with respect to the theory loaded into

14

Goal# Wff# Wff Instance
----- ---- ------------

[0] 0 query :- [1].
[1] 74 at(r, zero_pt, s0) :- [2].
[2] 138 current_landmark(zero_pt) :- [3],[4],[5].
[3] 159 curr_loc(0, 0).
[4] 102 cartesian(zero_pt, [0, 0]).
[5] 139 short_distance([0, 0], [0, 0]) :- [6].
[6] 140 distance_threshold(100).

’proved the robot is in ’zero_pt’

Then, we find a plan that achieves the robot’s goal (proving atgoal(r, S), with S a
free variable that gets instantiated in the proof).

Goal# Wff# Wff Instance
----- ---- ------------

[0] 0 query :- [1].
[1] 82 atgoal(r, result(moveto(corridor2_cross), result(moveto(mid_lab),

result(moveto(corridor_cross), s0)))) :- [2] , [3].
[2] 156 goal_location(corridor2_cross).
[3] 77 at(r, corridor2_cross, result(moveto(corridor2_cross),

result(moveto(mid_lab), result(moveto(corridor_cross),
s0)))) :- [4] , [16].

[4] 77 at(r, mid_lab, result(moveto(mid_lab),
result(moveto(corridor_cross), s0))) :- [5] , [14].

[5] 77 at(r, corridor_cross, result(moveto(corridor_cross),
s0)) :- [6] , [12].

[6] 74 at(r, zero_pt, s0) :- [7].
[7] 132 current_landmark(zero_pt):- [8],[9],[10].
[8] 153 curr_loc(0, 0).
[9] 96 cartesian(zero_pt, [0,0]).

[10] 133 short_distance([0,0], [0,0]):- [11].
[11] 134 distance_threshold(100).
[12] 71 vConnected(zero_pt, corridor_cross) :- [13].
[13] 113 vConnected(corridor_cross, zero_pt).
[14] 71 vConnected(corridor_cross, mid_lab) :- [15].
[15] 114 vConnected(mid_lab, corridor_cross).
[16] 118 vConnected(mid_lab, corridor2_cross).
’proved the plan is ’result(moveto(corridor2_cross), result(moveto(mid_lab),

result(moveto(corridor_cross), s0)))’

Then, we find the first situation in the plan, proving firstSit(S, S1) with S instanti-
ated (to result(moveto(corridor2 cross), result(moveto(mid lab), result(moveto(
corridor cross)))) in this case) and S1 a free variable that gets instantiated in the
proof.

Goal# Wff# Wff Instance
----- ---- ------------

[0] 0 query :- [1].
[1] 83 firstSit(result(moveto(corridor2_cross), result(moveto(mid_lab),

result(moveto(corridor_cross),s0))),
result(moveto(corridor_cross),s0)) :- [2].

[2] 83 firstSit(result(moveto(mid_lab),
result(moveto(corridor_cross),s0)),
result(moveto(corridor_cross),s0)) :- [3].

[3] 84 firstSit(result(moveto(corridor_cross),s0),
result(moveto(corridor_cross),s0)).

Finally, we find the first landmark associated with the first situation. We do so
by proving at(r, L1, S), with S instantiated (to result(moveto(corridor cross)) in
this case) and L1 a free variable that gets instantiated in the proof.

PTTP for that layer (Section B.2).

15

Goal# Wff# Wff Instance
----- ---- ------------

[0] 0 query :- [1].
[1] 77 at(r, corridor_cross, result(moveto(corridor_cross), s0)) :-

[2], [8].
[2] 74 at(r, zero_pt, s0) :- [3].
[3] 132 current_landmark(zero_pt):-[4],[5],[6].
[4] 153 curr_loc(0, 0).
[5] 96 cartesian(zero_pt, [0, 0]).
[6] 133 short_distance([0,0], [0,0]) :- [7].
[7] 134 distance_threshold(100).
[8] 71 vConnected(zero_pt, corridor_cross):- [9].
[9] 113 vConnected(corridor_cross, zero_pt).

’found the landmark ’corridor_cross

5.2 Layer 2: Local Action-Planning

Layer 2 translates target landmarks (given to it from Layer 3) into Cartesian co-
ordinates for the robot (sent to Layer 1), and for planning, low-level interaction,
and control of the elevators. (Currently, there is no low-level implementation of
the elevator control instructed by this layer.) The theory can be seen as comprising
four main parts: sensory-focused, motion-focused, elevator-focused and spatial re-
lationships in the world. The following description uses predicates, functions and
constant symbols that are identical to those used in the implemented theory. The
complete theory and an index of its symbols appear in Appendices B.1 and B.3.

The sensory-focused and spatially-focused theories are similar to the ones used in
Layer 3. The main difference from Layer 3 is that the property of two landmarks
being visually connected is now dependent on the situation (the elevators may be
connected to their entrances or not).

The inputs for this layer are the current location data from the robot (curr loc) and
the output from Layer 3 (target landmark). During each cycle, it tries to plan for
the next landmark in Cartesian coordinates and prove move cmd([X ,Y]). If suc-
cessful, it inputs destination(X ,Y) into Layer 1. The motion-focused sub-theory
uses a map and a simple axiom to translate landmarks to Cartesian locations.

target landmark(L) ∧ cartesian(L, [X,Y]) ∧ ¬elevator related(L)⇒

move cmd(X,Y)

(cf. Appendix B.3, formula 1 in the sample proof.)

The theory also has additional axioms describing the different logical positions

16

involved, and when the elevator is relevant. For example,

elevator(L) ⇐⇒ (L = elev1 ∨ L = elev2)

(L 6= front(elev(floor(F))) ∨ ¬current landmark(elev(floor(F))))∧

L 6= elev(floor(F)) ∧ ¬elevator(L)⇒ ¬elevator related(L)

cartesian(corridor cross , [805,−300])

(cf. Appendix B.3, formulae 11-13,5,31 in the sample proof.)

An example proof of move cmd(X,Y) (with X,Y variables that get instantiated
in the proof) from this theory and the message target landmark(corridor cross)
(received from Layer 3) is

Goal# Wff# Wff Instance
----- ---- ------------

[0] 0 query :- [1].
[1] 1 move_cmd(805, -300) :- [2] , [3] , [5].
[2] 89 target_landmark(corridor_cross).
[3] 5 not_elevator_related(corridor_cross):-[4].
[4] 13 not_elevator(corridor_cross).
[5] 31 cartesian(corridor_cross, [805, -300]).

’proof succeeded. move to coordinates (’805,-300’)’

Finally, the elevator-focused part of this layer is a situation calculus theory (Mc-
Carthy and Hayes, 1969) with four main fluents: the landmark of the robot, the
landmarks of the two elevators and whether two landmarks are visually connected.
There are four action schemas: moveto(L), which moves the robot to landmark L;
callElev, which calls the elevator; orderElev(floor(F)), which commands the el-
evator to go to floor F , and wait, which results in waiting an undetermined amount
of time. The effect axioms for these actions are the following:

at(r, L0, S) ∧ vLinked(L,L0, S)⇒ at(r, L, result(moveto(L), S))

at(r, front(elev(floor(F))), S)⇒

(at(r, front(elev(floor(F))), result(callElev, S))∧

(at(elev1, f loor(F), result(wait, result(callElev, S)))∨

at(elev2, f loor(F), result(wait, result(callElev, S)))))

at(r,X, S)⇒ at(r,X, result(wait, S))

at(r, E, S) ∧ elev(E)⇒

(at(r, E, result(orderElev(floor(F)), S))∧

at(E, floor(F), result(wait, result(orderElev(floor(F)), S))))

(cf. Appendix B.3, formulae 18-21 in the sample proof.) The first says that if two
positions are visually linked in a situation then moving from one to the other results

17

in the robot being in the other position. The second axiom says that after calling
the elevator and waiting, one of the elevators (there are two) will come. For this
situation calculus theory we need some frame axioms, which we add by simply
specifying them by hand (the number of effect axioms and fluents is small, so there
is no harm in specifying them explicitly), interleaved with the effect axioms above.

5.3 Layer 1: Destination-Seeking

Layer 1 supports simple movements towards a goal location, more closely resem-
bling the exploration layer of Brooks’ system than the wandering layer. Given a
particular pair of coordinates specified by the input destination from Layer 2 and
given the location and orientation of the robot, 4 it concludes the existence of a
“virtual pushing object” in a particular location close to the robot and opposite the
destination. When input into Layer 0’s theory, Layer 0’s obstacle avoidance behav-
ior effectively moves the robot towards the destination.

We use the following symbols in our description of Layer 1:

• Predicate symbols that should ideally be constants: push object(z) (where z is a
special constant that denotes a pushing object), nquads(8), push obj dist(20),
curr loc(〈X0 〉, 〈Y0 〉), destination(〈Xd〉, 〈Yd〉).

• Predicate symbols that should ideally be functions: quadrant(〈X 〉, 〈Y 〉, 〈Qd〉),
direction(〈Obj 〉, 〈Dir〉), distance(〈Obj 〉, 〈Dist〉).

• Remaining predicates symbols: marginal distance(〈X0 〉, 〈Y0 〉, 〈Xd〉, 〈Yd〉),
object(〈Obj 〉), has push object(〈Qd〉).

The meaning of these symbols will become clearer in the theory description below.
Furthermore, a complete list of the symbols used in the layer and their intended
meanings are described in detail in Appendices B.4 and B.5.

The theory can be seen to have two main parts: sensory-focused and goal-focused.
The sensory-focused part translates the subjective odometry and direction of the
robot to a global view of the robot in the world. The goal-focused part divides
the world into a set of quadrants and uses the goal location to decide where to
place a pushing object (if at all). First, this object, represented by the predicate
push object, is only legitimized as a bona fide object if the destination isn’t already
near enough:

∀X0, Y 0, Xd, Y d, PO. push object(PO) ∧ curr loc(X0, Y 0)∧

destination(Xd, Y d) ∧ ¬marginal distance(X0, Y 0, Xd, Y d)⇒

object(PO).

4 These coordinates are with respect to the fixed coordinate system of the domain.

18

(cf. Appendix B.5, formula 6 in the sample proof.) The pushing object is placed in
the middle of the quadrant opposite the destination quadrant:

∀X0, Y 0, Xd, Y d,Qd. curr loc(X0, Y 0) ∧ destination(Xd, Y d)∧

quadrant(X0−Xd, Y 0−Y d,Qd)⇒

has push object(Qd).

∀Qd,NQ,PO,Dist po. nquads(NQ) ∧ has push object(Qd)∧

push object(PO) ∧ push obj dist(Dist po)⇒

direction(PO, (Qd + 0.5) ∗ 2π
NQ

) ∧ distance(PO,Dist po).

(cf. Appendix B.5, formulae 21–23 in the sample proof.) nquads is the number of
quadrants and push obj dist is the distance from the robot at which to place the
pushing object.

The complete theory appears in Appendices B.4 and B.5.

The theorem prover attempts to find an object PO such that it can prove
object(PO) and push object(PO), and attempts to find values Dist po and Dir po

that make distance(PO ,Dist po) and direction(PO ,Dir po) true. If successful,
it inserts these sentences into Layer 0. The following is a sample of a successful
proof of the need for a pushing object.

Goal# Wff# Wff Instance
----- ---- ------------

[0] 0 query :- [1] , [10].
[1] 6 object(z) :- [2] , [3] , [7] , [8].
[2] 5 push_object(z).
[3] 31 curr_loc_internal(38, -103) :- [4] , [5].
[4] 58 curr_loc(38, -103).
[5] 35 offset_internal(0, 0, 0) :- [6].
[6] 60 offset(0, 0, 0).
[7] 61 destination(805, -300).
[8] 8 not_marginal_distance(38, -103, 805, -300) :- [9].
[9] 3 margin(50).

[10] 5 push_object(z).

Goal# Wff# Wff Instance
----- ---- ------------

[0] 0 query :- [1] , [23].
[1] 22 distance(z, 20) :- [2] , [3] , [4] , [11] , [14].
[2] 5 push_object(z).
[3] 9 push_obj_dist(20).
[4] 21 has_push_object(3) :- [5] , [9] , [10].
[5] 31 curr_loc_internal(38, -103) :- [6] , [7].
[6] 58 curr_loc(38, -103).
[7] 35 offset_internal(0, 0, 0) :- [8].
[8] 60 offset(0, 0, 0).
[9] 61 destination(805, -300).

[10] 16 quadrant(38-805, -103- -300, 3).
[11] 23 quad_angle(3, 2.74889) :- [12] , [13].
[12] 1 pi(3.14159).
[13] 11 nquads(8).
[14] 24 angle_world_vs_robot(2.74889, 2.74889- -1.11352-2*3.14159) :-

[15] , [21] , [22].

19

[15] 32 curr_dir_internal(-1.11352) :- [16] , [17] , [19].
[16] 59 curr_dir(2962).
[17] 35 offset_internal(0, 0, 0) :- [18].
[18] 60 offset(0, 0, 0).
[19] 33 angle_deg_rad(2962-0, -1.11352) :- [20].
[20] 1 pi(3.14159).
[21] 1 pi(3.14159).
[22] 27 between_minus_and_plus(3.14159, 2.74889- -1.11352,

2.74889- -1.11352-2*3.14159).
[23] 22 direction(z, 2.74889- -1.11352-2*3.14159) :-

[24] , [25] , [26] , [33] , [36].
[24] 5 push_object(z).
[25] 9 push_obj_dist(20).
[26] 21 has_push_object(3) :- [27] , [31] , [32].
[27] 31 curr_loc_internal(38, -103) :- [28] , [29].
[28] 58 curr_loc(38, -103).
[29] 35 offset_internal(0, 0, 0) :- [30].
[30] 60 offset(0, 0, 0).
[31] 61 destination(805, -300).
[32] 16 quadrant(38-805, -103- -300, 3).
[33] 23 quad_angle(3, 2.74889) :- [34] , [35].
[34] 1 pi(3.14159).
[35] 11 nquads(8).
[36] 24 angle_world_vs_robot(2.74889, 2.74889- -1.11352-2*3.14159) :-

[37] , [43] , [44].
[37] 32 curr_dir_internal(-1.11352) :- [38] , [39] , [41].
[38] 59 curr_dir(2962).
[39] 35 offset_internal(0, 0, 0) :- [40].
[40] 60 offset(0, 0, 0).
[41] 33 angle_deg_rad(2962-0, -1.11352) :- [42].
[42] 1 pi(3.14159).
[43] 1 pi(3.14159).
[44] 27 between_minus_and_plus(3.14159, 2.74889- -1.11352,

2.74889- -1.11352-2*3.14159).
push object distance = 20
push object direction = -2.42077

5.4 Layer 0: Obstacle-Avoidance

Layer 0 is responsible for deciding what low-level action the robot should perform.
Our description of this theory uses the following symbols:

• Predicate symbols that should ideally be constants: nsonars(16), min speed(10),
min angle(0.3), fwd(〈Speed〉), heading speed(〈Speed〉), turn(〈Angle〉),
heading angle(〈Angle〉), get force([〈ForceMag〉, 〈ForceDir〉]).

• Predicate symbols that should ideally be functions:
adjacent right sonar(〈SonarL〉, 〈SonarR〉), sonar direction(〈Sonar〉, 〈Dir〉),
sonar reading(〈Sonar〉, 〈Dist〉), correct distance(〈Sonar〉, 〈Dist〉),
distance(〈Obj 〉, 〈Dist〉), direction(〈Obj 〉, 〈Dir〉).

• Remaining predicate symbols: object(〈Obj 〉), sonar(〈Sonar〉), need turn,
need fwd .

A complete list of symbols and their intended meanings are described in detail
in Appendices B.4 and B.6. (Note that in our implementation correct distance,
need turn, and need fwd each take an additional argument which we ignore here

20

– without loss of generality – for the sake of clarity.)

The theory has two main parts: sensory-focused and control-focused. We divide
it to conceptually correspond to the modules shown in Figure 1. During each cy-
cle of layer 0, the theorem prover of layer 0 attempts to prove fwd(Speed) and
turn(Angle), where Speed and Angle are instantiated by the proof. If successful,
the results are passed to Layer -1.

The inputs for this layer are the sonar data and the output from Layer 1. The input
language includes the symbols sonar reading , object , distance and direction. The
output includes fwd and turn.

The sensory-focused part considers sensory input only from the sonars. It takes its
input, asserted in the form of the axiom schema

sonar reading(Sonar number ,Dist)

from the physical sonars and translates it into a map of objects, one per sensor,
recording their distance and direction (relative to the robot) 5 . The direction of
each object is the corresponding sonar’s direction. This interpretation of the data
relies, of course, on the assumptions that each sonar observes a different object
and objects are points. These assumptions are not significant for the purpose of
obstacle-avoidance.

direction is effectively made a function by restricting angles to be in the range
[0, 2π]. To account for noise, the distance of each object is computed by applying
a coarse filter to the sonar reading by taking a weighted average of the readings
of the sonar and its two neighboring sonars. This is based on the assumption that
objects observed by neighboring sensors tend to be close. Obviously, there are spe-
cial scenarios where this assumption breaks down, but we found it to be effective
in practice.

∀Sonar, LeftS,RightS,Dist,DistL,DistR.

adjacent right sonar(Sonar,RightS)∧

adjacent right sonar(LeftS, Sonar)∧

sonar reading(LeftS,DistL) ∧ sonar reading(Sonar,Dist)∧

sonar reading(RightS,DistR) ∧Dist ≤ DistL + DistR⇒

correct distance(Sonar, (DistL + 4 ∗Dist + DistR)/6).

5 The robot’s 0-radians reference point is straight ahead, the front sonar is numbered 0,
and the sonars are numbered consecutively, counter-clockwise from 0 to nsonars − 1.

21

∀Sonar, LeftS,RightS,Dist,DistL,DistR.

adjacent right sonar(Sonar,RightS)∧

adjacent right sonar(LeftS, Sonar)∧

sonar reading(LeftS,DistL) ∧ sonar reading(Sonar,Dist)∧

sonar reading(RightS,DistR) ∧DistL + DistR < Dist⇒

correct distance(Sonar, (DistL + 2 ∗Dist + DistR)/4).

∀Sonar,Dir,Dist. sonar(Sonar)∧

sonar direction(Sonar,Dir) ∧ correct distance(Sonar,Dist)⇒

(∃Obj. object(Obj) ∧ direction(Obj,Dir) ∧ distance(Obj,Dir)) .

(cf. Appendix B.6, formulae 14–16 in the sample proof.) In the implementation,
we replace Obj in the last axiom with a Skolem function obj sk1. We only have an
implication from sonars to objects because we minimize object in our circumscrip-
tion (see Section 5.6). For the same reason, we do not include axioms stating that
there is at most one object at any location. Also, like direction, sonar direction is
restricted to the range [0, 2π] to effectively make it a function. The sensory-focused
part may also discover “virtual” objects by way of layer 1’s subsumption latch.

The control-focused part decides which of the actions to perform, summing up the
“repulsive forces” that the different objects around the robot exert on it; these forces
are correlated to the distances of the objects from the robot. It uses the resulting
force to determine whether the robot should turn (and how much) or move forward
(and how fast).

get force does the dirty work of computing the combined repulsive force from the
different detected objects. It is equal to a pair [ForceMag, ForceDir] where

ForceMag =
√

Forcey
2 + Forcex

2.

ForceDir = tan−1(Forcey

Forcex

).

Forcex =
∑

object(Obj),distance(Obj,Dist),direction(Obj,Dir)
Dist · cos(Dir).

Forcey =
∑

object(Obj),distance(Obj,Dist),direction(Obj,Dir)
Dist · sin(Dir).

We implement get force as a library function rather than as a logical theory: it does
not gain much by the logical representation, it can be implemented more efficiently
as a procedure, and the logical representation would use some library functions
anyway. In the future, if we want to enjoy the benefits of the declarative approach
(discussed in Section 1) for this part as well, then our implementation will have to
use of a more advanced semantic-attachments or theorem proving technology.

22

The layer uses the ForceDir to specify a heading angle for the robot away from
this force. Once headed in the right direction, the robot is commanded to move
away at a speed proportional to the strength of the force, slowing down as it moves
farther away from the objects.

∀ForceMag, ForceDir. get force([ForceMag, ForceDir])⇒

heading angle((ForceDir mod 2π)− π) ∧ heading speed(ForceMag).

(cf. Appendix B.6, formula 41 in the sample proof.) Note that, like the direction
of each object, ForceDir and heading angle are computed relative to the robot’s
current orientation.

heading angle and heading speed are only taken seriously if they are larger than
constant thresholds min angle and min speed, respectively.

∀Angle,MIN ANGLE . min angle(MIN ANGLE) ∧ heading angle(Angle)⇒

(Angle > MIN ANGLE ⇐⇒ need turn).

∀Speed ,MIN SPEED . min speed(MIN SPEED) ∧ heading speed(Speed)⇒

(Speed > MIN SPEED ⇐⇒ need fwd).

(cf. Appendix B.6, formulae 45, 46, 48, and 49 in the sample proof.) If
heading angle is significant, the output turn is set to it. If heading speed is sig-
nificant and no turn is needed, the output fwd is set to it (we disallow simultaneous
forward and rotational motion).

∀Angle. need turn ∧ need fwd ∧ heading angle(Angle)⇒ turn(Angle).

∀Speed. ¬need turn ∧ need fwd ∧ heading speed(Speed)⇒ fwd(Speed).

(cf. Appendix B.6, formulae 44 and 47 in the sample proof.)

The complete theory appears in Appendices B.4 and B.6.

The Layer 0 theorem prover attempts to prove turn(A) and fwd(S). If either proof
is unsuccessful, it sets the corresponding constant to the default 0. It then inserts
the sentences into Layer -1’s subsumption latch.

We now consider a sample proof. First, we collect the set of objects for get force
to use:

Goal# Wff# Wff Instance
----- ---- ------------

[0] 0 query :- [1] , [3] , [5].
[1] 59 object(z) :- [2].
[2] 83 external_object(z).
[3] 60 distance(z, 20) :- [4].
[4] 84 external_distance(z, 20).

23

[5] 61 direction(z, -3.08225) :- [6].
[6] 85 external_direction(z, -3.08225).

Goal# Wff# Wff Instance
----- ---- ------------

[0] 0 query :- [1].
[1] 14 object(obj_sk1((91+65+4*140)//6, 1* (2*3.14159/16))) :-

[2] , [3] , [5] , [8].
[2] 2 pi(3.14159).
[3] 52 sonar_reading_internal(1, 140) :- [4].
[4] 65 sonar_reading(1, 140).
[5] 13 sonar_direction(1, 1* (2*3.14159/16)) :- [6] , [7].
[6] 2 pi(3.14159).
[7] 4 nsonars(16).
[8] 15 correct_dist(1, 140, (91+65+4*140)//6) :-

[9] , [10] , [11] , [13].
[9] 17 adjacent_right_sonar(1, 0).

[10] 18 adjacent_right_sonar(2, 1).
[11] 52 sonar_reading_internal(2, 91) :- [12].
[12] 66 sonar_reading(2, 91).
[13] 52 sonar_reading_internal(0, 65) :- [14].
[14] 64 sonar_reading(0, 65).

... [proofs for sonars 0, 2-15]

A subsequent attempt to prove turn(A) fails, so we attempt to prove fwd(S),
which succeeds.

Goal# Wff# Wff Instance
----- ---- ------------

[0] 0 query :- [1].
[1] 47 fwd(26) :- [2] , [6] , [10] , [12].
[2] 41 heading_speed(26) :- [3] , [4] , [5].
[3] 1 not_ab_avoid.
[4] 42 get_move_speed(26, 26).
[5] 43 get_move_dir(2.90998, -0.23).
[6] 41 heading_angle(-0.23) :- [7] , [8] , [9].
[7] 1 not_ab_avoid.
[8] 42 get_move_speed(26, 26).
[9] 43 get_move_dir(2.90998, -0.23).

[10] 45 not_need_turn(-0.23) :- [11].
[11] 8 min_angle(0.3).
[12] 49 need_fwd(26) :- [13].
[13] 10 min_speed(10).
’turn angle = ’0
’fwd speed = ’26

5.5 Layer -1: Halt or Go

The lowest layer, Layer -1, is responsible for sending actions to the robot or halting
the robot if there are objects with which the robot is about to collide. Our descrip-
tion of this theory uses the following symbols:

• Predicate symbols that should ideally be constants: min dist(30), go fwd(Speed),
go turn(〈Angle〉.

• Predicate symbols that should ideally be functions:
sonar reading(〈Sonar〉, 〈Dist〉), sonar direction(〈Sonar〉, 〈Dir〉),

24

distance(〈Obj 〉, 〈Dist〉), direction(〈Obj 〉, 〈Dir〉).
• Remaining predicates: object(〈Obj 〉), sonar(〈Sonar〉), object ahead ,

fast halt robot , halt robot .

A complete list of symbols and their intended meanings are described in detail in
Appendices B.4 and B.6.

If Layer 0 proves fwd(S) and/or turn(A), these are inserted into Layer -1 as
external fwd(S) and external turn(A) and translated by the sensor module into
go fwd(S) and go turn(A). These commands get passed to the robot if Layer -1
finds no reason to halt.

Layer -1 axiomatizes two halt predicates: fast halt robot and halt robot .
fast halt robot is an easy-to-compute approximation of whether the robot should
halt or not. It is made true if the front sonar’s raw data indicates that an object may
be too close (i.e., less than the constant min dist away) in front of the robot (any
direction between −π/3 and π/3 radians relative to the robot).

∀Sonar,Dir,Dist,MIN DIST . sonar(Sonar)∧

sonar direction(Sonar,Dir) ∧Dir ≤ π/3 ∧Dir ≥ 2π − π/3∧

sonar reading(Sonar ,Dist) ∧min dist(MIN DIST) ∧ Dist ≤ MIN DIST

⇒ fast halt robot.

(cf. Appendix B.6, formula 36 in the sample proof.) If fast halt robot is proven to
be false and Layer 0 has sent a forward command, the LSA concludes it is reason-
ably safe to pass the command on to the robot. Otherwise, a more rigorous check
is required: halt robot.

halt robot is true iff an object is detected directly ahead.

object ahead ⇐⇒ halt robot

(cf. Appendix B.6, formulae 37 and 38 in the sample proof.) An object is considered
directly in front of the robot iff there is an object determined to be too close in front
of the robot.

object ahead ⇐⇒

(∃Obj,Dist,Dir. object(Obj)∧

distance(Obj,Dist) ∧Dist < min dist∧

direction(Obj,Dir) ∧Dir < π/3 ∧Dir > 2π − π/3) .

(cf. Appendix B.6, formulae 39 and 40 in the sample proof.) In the implementa-
tion, we replace Obj, Dist, and Dir with Skolem functions obj sk2, dist sk1, and

25

dir sk1, respectively, for the⇒ direction.

Objects, their distances, and their directions are computed as in Layer 0. The com-
plete theory appears in Appendices B.4 and B.6.

The Layer -1 theorem prover first attempts to prove go turn(A). If it succeeds,
Layer -1 directs the robot to turn A degrees. The theorem prover then attempts
to prove fast halt robot. If it succeeds, it attempts to prove halt robot. If both
proofs succeed, the layer sends a halt command to the robot. Otherwise, the theorem
prover attempts to prove go fwd(S). If it succeeds, then the layer sends the robot
a command to move forward at a speed of S. If it doesn’t, it commands the robot
to halt.

Consider the following example proofs. In the first example, Layer 0 has not com-
puted any commands yet and no inputs have been received from the sonars:

’start prove go_turn(A)’
’failed proof. ’
’start prove fast_halt_robot’
’proof failed’
’start prove go_fwd(S)’
’failed proof. ’
’turn angle = ’0
’fwd speed = ’0

None of the proofs succeed, so the default behavior is to halt. In the second exam-
ple, the sonars have reported values and Layer 0 has sent a command to go forward
at a speed of 24:

’start prove go_turn(A)’
Proof:
Goal# Wff# Wff Instance
----- ---- ------------

[0] 0 query :- [1].
[1] 63 go_turn(0) :- [2].
[2] 84 external_turn(0).

’start prove fast_halt_robot’
’proof failed’
’start prove go_fwd(S)’
Proof:
Goal# Wff# Wff Instance
----- ---- ------------

[0] 0 query :- [1].
[1] 62 go_fwd(24) :- [2].
[2] 83 external_fwd(24).

’turn angle = ’0
’fwd speed = ’24

None of the halt proofs succeed, so Layer -1 passes the forward command on to the
robot.

26

5.6 The Default Assumptions of Robots’ Layers

Each one of the layers has some default assumptions that it makes, as described in
Section 3. In this section we list those nonmonotonic assumptions that are made by
the layers of the system described in Figure 6. The current implementation of these
assumptions on the robot are not always logically equivalent to this circumscription,
as we use the negation-as-failure mechanism of Prolog together with a hard bound
on the resources used in proof finding. Thus, no actual circumscription computation
is involved in the implementation.

5.6.1 Layer 3’s Assumptions

We add the circumscription formula

Circ[Layer3 ; Φ3;L(Layer3)]

where Φ3(L) = ∃S, Sg.(at(r, L, S)∧ firstSit(S, Sg)∧ atgoal(r, Sg)). This layer
tries to prove that the next action to be performed by the robot is a movement to a
particular location. The minimization of Φ3 implies that it is assumed that there is
no target landmark unless we prove so.

5.6.2 Layer 2’s Assumptions

We add the circumscription formula

Circ[Layer2 ;move cmd ;
−→
Z 2].

This formula says that we minimize the movements of the robot: if we cannot prove
that there is a target landmark, we should stay put. Thus, we wish to minimize the
movement of the robot, varying everything else that we know. If we prove that
there is a movement command, then the robot must move. Otherwise, it can stay
put. Notice that the layers below may have to take this decision into account and
revise it if there are other factors that they need to consider (e.g., objects about to
collide with the robot).

5.6.3 Layer 1’s Assumptions

We add the circumscription formula

Circ[Layer1 ; Φ1 < Φ2;
−→
Z 1].

where Φ1 = object(Z) ∧ push object(Z) and Φ2 = ∃D,A.(distance(Z,D) ∧
direction(Z,A)). This formula says roughly that unless we can prove that there

27

is another object (z) that is a pushing object and with some distance and direc-
tion, then we assume that there is no such object. In fact, Layer 1’s theorem prover
attempts to prove object(z), direction(z, A), and distance(z,D) during each cy-
cle. Upon successfully proving these, it introduces them into Layer 0’s input latch,
which then uses the new object to modify its behavior (avoid this object as well).

5.6.4 Layer 0’s Assumptions

We add the circumscription formula

Circ[Layer0 ; object < distance < direction < turn < fwd ;
−→
Z 0].

During each cycle of Layer 0, it applies the CWA to the symbols object , distance,
and direction in the input language. It then uses its theorem prover to try to prove
fwd(Speed) and turn(Angle), where Speed and Angle are instantiated by the proof.
The results are sent as new axioms into Layer -1’s latch. This is modeled by mini-
mizing all of the predicates object , distance, direction, turn, and fwd , but giving
priority to object , distance, and direction over turn, and to turn over fwd in this
minimization.

5.6.5 Layer -1’s Assumptions

We add the circumscription formula

Circ[Layer−1 ; go turn < fast halt robot < halt robot < go fwd ;
−→
Z −1].

During each cycle of Layer -1, it receives information from Layer 0 as to the action
it needs to take, go forward or turn. It then tries to prove that this action is indeed
taken, if there is no need to halt the robot.

It is important to notice that (for this layer and throughout), in general, messages
from higher layers may set the value of any of the predicates in L(Layer−1) and
not only affect the minimized predicate. For example, in Layer -1 the predicate
ab avoid is varied together with the rest of

−→
Z −1, but higher layers (in the current

case, Layer 0 or the input layer) may send a message setting ab avoid to some
value, turning off the obstacle avoidance behavior of Layer -1.

5.7 Layers Do Not Always Have a Model of Time

Many proposals can be used to represent the effects of events and the flow of
time (e.g., (McCarthy and Hayes, 1969; Reiter, 1991; Gelfond and Lifschitz, 1998;
Miller and Shanahan, 1999; Doherty et al., 1998; Thielscher, 1998; Sandewall,

28

1994)). Typically, these proposals are considered to have a fixed relationship to
the world. For example, situation calculus includes a constant symbol s0 which
refers to a particular situation.

In contrast to these, many of the theories described above for the layers do not
include any notion of time. In particular, Layer -1, Layer 0 and Layer 1 include very
reactive-like theories. They are not concerned with the flow of time but rather with
the current state of the world. For these theories, time is implicit as are situations.

Even Layers 2 and 3, which have a dynamic picture of the world, do not reason
about the flow of time before the current situation. At every cycle, they are asked
to prove the goal for their respective layer. For that computation, they regard s0 as
the current situation, and the sensors determine what we know about this situation.
In particular, these layers do not include information from earlier times. This limits
the amount of reasoning we can do with these layers, representing a tradeoff made
by these layers to avoid costly computations.

Future layers (e.g., a Layer 4 or perhaps parallel layers to Layer 2 and 3) can include
such information, having different connections between their symbols and the en-
vironment. For example, such layers can regard s0 as a fixed situation attached to
the beginning of the world of the robot (the time when the robot was turned on).
This would entail regarding the current situation as the one that resulted from the
actions performed by the robot and other events that occurred since the beginning
of the world of the robot (s0). This may also require some accounting of the time
that passed since the beginning of an action or the beginning of time (as used in
(Reiter, 1996), for example).

6 Implementation on a Mobile Robot

We have implemented the above architecture using the PTTP theorem prover (Stickel,
1992; Stickel, 1988b; Stickel, 1988a; Stickel, 2003), on a cluster of Sun SuperSparc
1 stations running SWI Prolog or Quintus Prolog as the underlying interpreter for
PTTP. The system runs on a Nomad 200 robot.

6.1 Choosing a Theorem Prover

Choosing a theorem prover is not easy. A theorem prover that is embedded in an
autonomous agent needs to be a fully automated reasoner (no human intervention
can be used here), needs to allow easy analysis of its proof progression (the system
designer uses this information to change the theory or to detect problems in it),
needs to allow for proof strategies (to be specified either by a human or by another

29

layer), needs to allow for nonmonotonic reasoning (or at least some approximation
of it), and possibly needs to allow for theory resolution (Stickel, 1985). Theories
are also likely to require algebraic computations (such as trigonometric functions)
for which systematic algorithms are better suited than a theorem prover. Thus, the
theorem prover also needs to allow for easy embedding of semantic attachments.

Provers we examined included Otter (McCune, 1994) (a resolution theorem prover),
ACL2 (Kaufmann et al., 2000) (an industrial-strength version of the Boyer-Moore
theorem prover) and ATP (Farquhar, 1997) (a model elimination theorem prover).
The major difficulties we encountered with them (although not all difficulties were
encountered with all provers) were the inability to append semantic attachments
easily, the complexity of making the theorem prover run on a given platform, the
inability to control the inference process easily (via strategies or otherwise), and the
lack of documentation. In addition we also examined a few proof checkers includ-
ing PVS (Rushby et al., 2003), HOL (Gordon and Melham, 1993) and GETFOL
(Giunchiglia, 1994), all of which were found unsuitable due to their need for at
least some human intervention.

PTTP (Prolog Technology Theorem Prover) is a model-elimination theorem prover
using iterative deepening in the proof space. Given a theory made of clauses (not
necessarily disjunctive) without quantifiers, PTTP produces a set of Prolog-like
Horn clauses, ensures that only sound unification is produced, and avoids the
negation-as-failure proofs that are produced by the Prolog inference algorithm. It is
sound and complete for refutation in FOL (general first-order sentences are trans-
lated into clausal form in the usual way, using Skolemization).

Compared to the other theorem provers we examined, we found PTTP to be sim-
ple and easily customizable. Its close relationship with the underlying program-
ming language (it has been implemented in both Prolog and Lisp) allows for easy
use of semantic attachments. Also, its output at run-time together with its iterative-
deepening procedure allow for proof-progression analysis and control. Finally,
although PTTP lacked suitable documentation, there was a fair collection of suf-
ficiently illustrative examples. As a result, despite some difficulties incurred by
the use of semantic attachments and built-in predicates (such as the algebraic <
relation), PTTP gave us relatively little trouble in either installation or use.

6.2 The Software and Dynamics of the System

Our implementation is written in C++ with classes allowing prover-specific im-
plementation: Layer is the superclass of Layer qp (Quintus Prolog with PTTP),
Layer swi (SWI Prolog with PTTP) and Layer input (a layer used in an executable
that allows the user to send new axioms to the other running layers). An executable
consists of a Layer object (the central piece of the executable), objects for com-

30

munication (TCP/IP), and an embedded theorem prover (in the case of PTTP, this
means an object file consisting of a Prolog implementation and a compiled PTTP).
There is a separate layer for the communication with the robot that translates Layer
-1’s proven goals to robot motion commands, and sends sensory information to the
layers on request.

Each time a layer is run (with whichever theorem prover implementation) a con-
figuration file specifies the theory it should initially load and the communication
pattern of the layer. The communications part specifies the layers from which it
should accept axioms, the host/port of that layer, and the mode of communication
(is it synchronous (request data explicitly) or asynchronous (use the data in the
latch)).

After initializing the communication, it initializes the theorem prover and loads the
body theory into it. Then it runs the following infinite loop: First, the layer reads
the messages that are on the ports and asserts the latest ones from each port into the
theorem prover; then, the layer attempts to prove the goal; finally, upon successful
conclusion, it sends the result of the proof to listening layers below it.

The information that the layer reads from the ports overrides previous latch data.
However, if no information arrived on a specific port, we reuse the information that
arrived previously. This allows the layers to work in different frequencies with-
out confusing delay in communication or computation for a directive that over-
rides the latest information from that layer. To avoid ambiguity, most layers prove
layer i failed if they failed to prove the goal (depending on the defaults asserted for
each layer). In that case, this proved assertion is sent to the listening layers, which
use this message to override previously received assertions.

6.3 Offline Experiments with PTTP and Simulated Sensors

Layer 0 Layer 1 Layer 2 Layer 3

Time Infer. Time Infer. Time Infer. Time Infer.

Mean SD Mean SD Mean SD Mean SD

Scen. 1 0.09 0.02 3598 629 0.02 0.01 394 2 0.01 4 0.00 20

Scen. 2 0.10 0.01 3703 613 0.02 0.01 384 4 0.52 27184 0.47 34056

Scen. 3 0.09 0.02 3575 640 0.02 0.01 389 1 0.00 4 11.24 694966

Table 1
Proof time (in seconds) and inference steps measurements for the LSA during experiments
in three different scenarios: (1) single-floor planning, (2) lower-level elevator planning, and
(3) multi-floor planning. (SD is standard deviation.)

We subjected our system to a set of experiments in a simulated office building en-
vironment. Table 1 summarizes the results for three scenarios of varying difficulty:
(1) planning a path towards a location on the same floor as the robot, (2) creating
a plan that requires a low-level plan for using the elevator, and (3) planning a path

31

towards a location on a different floor. In each scenario, we experimented with var-
ious robot orientations and obstacle positions in the robot’s vicinity. For each layer,
we measured the number of inference steps and time taken to prove its goal (results
from a sample online run are shown in Section B 6).

Layers 0, the critical layer, achieved its results in an average of 0.1 seconds when
a turn action was required, and 0.3 seconds when a forward action was required.
(Because of space concerns, we have included in Table 1 only the data for cases of
the former kind.) Layers 1, 2, and 3 worked fairly fast, although the long planning
involved in Scenario 1 took more than 10 seconds (for a depth of 30 in the proof
space). However, because we rely on the speed of only Layer 0, safety is not com-
promised; the avoidance capabilities ensure that the robot does not fall off a cliff
while planning a way to avoid the cliff edge.

6.4 LiSA’s Online Behavior on a Nomad 200 Robot

We ran several experiments on LiSA with goals of traveling to different rooms
in the building. Figure 7 presents average total time measurements for each layer
during these experiments. This figure shows that the current implementation is ade-
quate for a reactive behavior, especially given that without having to log its behavior
and with faster computers we can speed up the system by a factor of about 8. A few
improvements can be made to the implementation that would make it faster (e.g.,
use a faster theorem prover, faster hardware, better route planner in Layer 3, better
planner in Layer 2, and a few optimizations of the code), and we hope to use some
of those in the future.

Each experiment with LiSA starts with running the logical layers, the nomad layer
and the input layer. LiSA has a given map that is used by Layers 2 and 3. We reset
the robot in a position and heading that matches this map (see Figure 8). Using the
input layer, we tell the robot that its goal is to navigate to one of the rooms or across
the lab. It takes from a few seconds to a minute before Layer 3 finds a plan from
its current location, and sends a goal landmark to Layer 2. Layer 2 instantaneously
translates the landmark into a goal location and sends it to Layer 1. Layer 1 then
provides a pushing object to Layer 0. Layer 0 sends a motion command to Layer
-1, and Layer -1 executes it, if there are no direct obstacles in front of it. The robot
typically starts turning until it faces in the direction that it intends to go and then
proceeds forward towards that target. The transition between turning and moving
forward is smooth and without delays.

6 We do not list averages or standard deviations for Layers 2 and 3 because their perfor-
mances are independent of both the robot’s orientation and sonar readings.
7 There is some discrepancy between these measurements and the real-time behavior of
the system. These measurements are given for the system running with all logs registering
the advance of proofs and other messages that are required to collect statistics for these

32

Fig. 7. Average time (in seconds) per cycle for each of the layers 7 (each column corre-
sponds to the time taken by the indicated layer). The bars for each layer correspond to the
total wall-clock time per cycle and the total wall-clock time used for the proof in each cycle,
in this order from left to right.

(a)

RWALL WALL

WALL WALL

Robot2

Table

Box

Box

(b)

RWALL WALL

WALL WALL

Robot2

Table

Box

Box

Fig. 8. LiSA’s movement using sonars.

Figures 8 through 10 diagrammatically display an execution of LiSA’s movement
across the lab. Between Figures 8(a) and 8(b) LiSA’s Layer 0 pushes it away from
obstacles. From Figure 9(a) to Figure 10(b) Layer 1 sends an axiom to Layer 0
telling it that there is another (virtual) object that should influence its decision on
where to go. In Figure 10(a) Layer 1 sends an axiom that asserts the existence of
this object with a changed position (relative to the robot) to account for the fact the
the robot did not go straight towards its goal (Figure 10(b)).

In our experiments, LiSA took from 30 seconds to two minutes to move from one
landmark to the next, for landmarks approximately 4-10 meters apart and obstacles
close to its path. When we put obstacles such as chairs and humans in front of the
robot, it managed to go around them without colliding or hesitating.

runs. These mechanisms typically slow the system down by a factor of about 4.

33

(a)

WALL WALL

WALL WALL

Robot2

Table

Box

Box

R

(b)

WALL WALL

WALL WALL

Robot2

Table

Box

Box
R

Fig. 9. LiSA’s movement using sonars and a pushing object.

(a)

WALL WALL

WALL WALL

Robot2

Table

Box

Box

R

(b)

WALL WALL

WALL WALL

Robot2

Table

Box

Box

R

Fig. 10. LiSA’s movement using sonars and a pushing object.

One of the strengths of our architecture is that it allows us to send more knowledge
to the system as it is running. We can send such knowledge to change the behavior
of the system or extend it.

For example, in our earlier experiments, before we improved the theory of Layer 3,
LiSA sometimes got lost. If an obstacle was put in LiSA’s path and she had to go
around it, the next time Layer 3 tried to plan a path to the goal it sometimes did not
know where LiSA was, as she was not close to any landmark (and may have moved
significantly away from the path to the next landmark). In that case, we were able
to use the input layer and send an axiom into LiSA’s Layer 3 telling it that LiSA
was between the two landmarks. Currently, LiSA’s Layer 3 re-uses the last proven
goal landmark as the default that is sent to Layer 2 if Layer 3 fails. This sidesteps
the problem, but is not consistent with our semantics, as our theoretical layers have
no memory or state. We plan to extend the system and the semantics using models
of belief update to allow memory and belief change in a consistent manner.

In a more recent experiment a robot was occupying one of the landmarks that LiSA
wanted to use. LiSA kept trying to get to that landmark without success. In this
case, we were able to use the input layer to send an axiom into LiSA’s layers 2,3
telling them that there is a path between two other landmarks. This allowed LiSA
to use a different path on its way to the goal location.

34

These incidents showcase the strength of using the representation-and-reasoning
approach in general and the LSA architecture in particular. There are always things
that the designer of a robotic system cannot foresee, cases in which some program-
mers will have to go and recompile (sometimes redesign) the system with a patch
that would take care of the problem. When using the approach that we took, one can
simply send more knowledge to the system while it is running, thereby changing
its behavior in the desired way with no need for recompilation or redesign of the
software.

6.5 Tuning the System

Theorem provers are notoriously slow, which is one of the main reasons they are
usually not used for time-sensitive applications. However, in this implementation
we were able to sidestep this difficulty by using only small and simple theories and
using a fast approximation of nonmonotonic reasoning to conclude defaults. We
also attribute the speed achieved by our system to several optimizations that we
describe below.

First, dividing the planning so that Layer 2 executes “local planning” for the eleva-
tor domain allows Layer 3 to avoid an explosion of the proof space, which otherwise
would have occurred since there are four principal actions as well as a number of
frame axioms associated with the robot and the elevator. The separation also helps
prevent complex unifications.

Rather than use the theorem prover to compute the predicate get force in Layer 0,
it is embodied in a C function semantic attachment, significantly speeding up its
computation. The function calls Prolog’s setof operator to collect all the objects
for which existence proofs can be found (applying an implementation of the CWA
described below), computes the sum of the forces contributed by each object, then
returns the force vector [Strength,Direction].

Furthermore, since every proof in Layer 0 re-proves get force many times, caching
these proofs also improved the performance of Layer 0 significantly (from approx-
imately 10 seconds to 0.1 seconds per proof on a Sun UltraSparc 60).

During our experiments it became clear to us that much of the bottleneck in some
layers is in concluding that there is no proof. Without this conclusion the layer
cannot terminate the cycle and start a new cycle (with new sensory information and
new latch information). For this reason, each layer has an associated limit on the
depth of the search allowed for a proof of the goal. If no proof is found up to this
depth, we conclude that for any run-time purpose there is no proof. This depth limit
is determined experimentally and is specified together with the goal formula.

Depth limit is also used to implement a rough approximation for defaults. For ex-

35

ample, Layer 0 implements the CWA for objects by aggregating all the objects that
it can find up to a specified proof depth. Under the same assumption we consider
the depth limit on the proof of the goal as a default that says that the goal is false
by default.

The same mechanism allows us to provide islands in the search space of the prover.
For example, in Layer 3 we first try to prove that the robot is currently at a partic-
ular location. If we succeed, we add the assertion at(r ,CurrLandmark , s0) as a
temporary new axiom to the prover, where CurrLandmark is the landmark that we
found the robot to be in. This sometimes cuts the depth of the proof search space
by 10, which has a significant influence on the proof time (cuts the proof time in
those cases by a factor of approximately 10).

7 Related Work: Cognitive Robotics and Subsumption Architectures

Compared to other approaches to robot-control that use logic, the LSA is the only
system using general-purpose, full FOL theorem provers for reasoning and control.
This is the first presentation of a robot-control architecture that is built on theorem
provers and is suitable for realizing complex tasks in real time. Other differences
between our system and previous work exist and are interesting in the context of
future work and combination of the different approaches.

Shanahan (Shanahan, 1996) describes a map-building process using abduction, and
then implements his theory in an algorithm that is proved to have an abductive se-
mantics. Later work (Shanahan, 1998; Shanahan and Witkowski, 2000; Shanahan,
2000) uses abductive logic programming to solve planning and sensory problems
for mobile robots. In particular, some of these implemented systems use hierarchi-
cal planning and can deal with some noisy sensory data. The approach described
there uses online hierarchical planning, allowing fast planning and execution mon-
itoring. That work chooses to use logic programming tools (especially Prolog) in-
stead of general-purpose theorem provers. In comparison, the work we describe
in this paper is based on the expressivity of FOL theorem provers, and makes no
assumptions as to the form of the axioms nor does it appeal to restricted expressiv-
ity. The form of hierarchical planning used in our work somewhat predates that of
(Shanahan, 2000).

Baral and Tran (Baral and Tran, 1998) define control modules to be of a form of
Stimulus-Response (S-R) agents, relating them to the family of action languagesA
(e.g., (Gelfond and Lifschitz, 1993; Giunchiglia et al., 1997)). They provide a way
to check that an S-R module is correct with respect to an action theory inA orAR
and provide an algorithm to create an S-R agent from an action theory.

Systems based on the GOLOG project (e.g., (Levesque et al., 1997; Giacomo et al.,

36

1997; Giacomo et al., 1998; Reiter, 1998; Lakemeyer, 1999; Grosskreutz and Lake-
meyer, 2000; Boutilier et al., 2000)) have a planner that computes/plans a high-level
GOLOG program off-line. This plan is specified using the situation calculus ((Mc-
Carthy and Hayes, 1969)). The plan is executed and monitored later by the robot.
This family of systems allows plans that are specified on a high level, having nonde-
terministic actions and actions that require further elaborations. During execution
the GOLOG controller uses the plan specification to guide a search in the plan
space as needed. This allows the efficient absorption of sensory information, plans
that require some limited planning (or re-planning) during execution and the con-
sideration of events that do not depend on the robot (natural events). Logic and
situation calculus are used to give semantics for GOLOG programs, keeping the
system formally clean.

Another, somewhat earlier, line of work concentrated on compilation of logical
descriptions into control languages (e.g., (Kaelbling, 1987; Kaelbling, 1990; Kael-
bling and Rosenschein, 1990; Rosenshein and Kaelbling, 1995)). This approach
takes a description in logic of the planning problem, the condition-achievement
goal, or the condition-maintenance goal. It uses this representation to create a rule-
based representation that can be readily used to control an agent in real-time. This
approach provides a way to specify agents using logic or a formal model and then
to compile this representation to a reactive one.

Compared to all of this work, our system is the first to allow declarative represen-
tation and reasoning in real time, enabling the full power of first-order logic. Also,
the ability to send logical-formulae advice to the robot at run-time has not been a
property of any system (to our knowledge) since Shakey the robot (Nilsson, 1984).

An interesting application of logic in robotics has emerged in the context of Robotic
Soccer. Of particular relevance to our work are (Jung, 1999; Stolzenburg et al.,
2000). This research presents layered architectures in which some layers use logic
programming languages (e.g., Prolog) to specify predicates and functions that can
be used higher layers’ reasoning. The lowest layer is reactive (using some Pro-
log rules) and the higher layers are in charge of choosing one of a set of avail-
able scripts to perform (each script depends on the role the robot takes in the
game).(Stolzenburg et al., 2000) even goes so far as to propose the use of a general
purpose FOL theorem prover, but it does not implement or explore this direction
in any detail. The main conceptual difference between our work and these (besides
the added expressivity and declarativeness in our system) is in that in our system
every layer is autonomous and influence between layers is carried via axioms sent
from higher layers to lower ones. This allows our system to be more flexible and
reactive.

Compared to subsumption systems for robot control (e.g., (Brooks, 1990; Brooks
and Flynn, 1989; Matarić, 1992; Horswill, 1993; Brooks and Stein, 1994)) our sys-
tem allows the user to send new axioms to each of the layers as the robot is running.

37

This allows the user to give advice to the robot and to correct behaviors in runtime.
In addition, for better or worse, our system has no voting scheme for deciding on
the behavior that should be followed. Instead, the layers work in synergy, sending
messages to each other, together providing the compound behavior. (Maes, 1989;
Nakashima and Noda, 1998) present modifications to the subsumption architecture
approach that suggest extensions of our architecture that incorporate voting, but
exploring this is outside the scope of the current work.

Clearly, we have not solved the age-old problems with using theorem provers, and
there are limitations to our approach. However, with proper tuning and given recent
advances in automated reasoning, this kind of system seems to support high-level
reasoning that is still reactive, offering a major advantage to robotic systems and
systems that wish to perform commonsense reasoning online.

8 Conclusion

In this paper we have shown that theorem provers can be used for robot control
by employing them in a layered architecture. We demonstrated that the architecture
and the versatility of theorem provers allow us to realize complex tasks, while keep-
ing individual theories simple enough for efficient theorem proving. Furthermore,
we have grounded our proposal by giving it formal semantics based on circum-
scription.

Our system combines the virtues of using the represent-and-reason paradigm and
the behavioral-decomposition paradigm. It allows multiple goals to be serviced si-
multaneously and reactively. It also allows high-level tasks and is tolerant to dif-
ferent changes and elaborations of its knowledge in runtime. Finally, it allows us
to give more commonsense knowledge to robots. In these characteristics it is the
closest system to the Advice Taker portrayed by (McCarthy, 1958) that is known to
us.

There are many important avenues for building on our approach. Memory and state
can be added to the system easily, but the logical semantics must be modified to
account for them. We plan to use belief update semantics to extend this framework
and allow such modifications as defaults that change according to the beliefs of the
robot and diagnosis of the robot behavior and whereabouts for determining its lo-
cation. Also, we wish to create such reactive systems automatically from first-order
theories that describe the intended behavior. In this respect, we are exploring the
automatic decomposition of tasks into layers that together compose subsumption
architectures. We hope to achieve this using principles from (Amir, 2001; Amir
and McIlraith, 2003; Amir and Engelhardt, 2003).

In the immediate future we plan to add layers that create maps and layers that

38

reason about and update explicit beliefs about the world. We are also working on
incorporating vision sensory capabilities.

This work is a step towards our long-term goal of creating a general logic-based AI
architecture that is efficient and scalable, and that supports reactive common-sense
reasoning.

Acknowledgments

We wish to thank Mark Stickel for allowing us to use his PTTP source code (both
for PROLOG and LISP) and providing helpful answers to our inquiries regarding
its use. We also thank Nils Nilsson and Jean-Claude Latombe for allowing us to use
their Nomad 200 robots, and to Héctor González-Baños for a lot of help and advice
with using (and occasionally fixing) the robots. Finally, the anonymous reviewers
of this manuscript contributed greatly to its final form.

This research was supported by an AFOSR grant AF F49620-97-1-0207, and by a
National Physical Science Consortium (NPSC) fellowship.

A Proofs

A.1 Theorem 4.4: LSA is Complete for Sensors to Actions

We prove our theorem by induction on the number of layers. By definition 4.1, if
T has only one layer (Layer0), then T |= ϕ iff Circ[Layer0;

−→
C 0;
−→
Z 0] |= ϕ. For

ϕ0 = ϕ and k = 0 we get that Circ[Layerk;
−→
C k;
−→
Z k] |= ϕk. This proves the

theorem for n = 0.

Assume that the theorem is correct for n and we prove it for n+1. Let T ′ be the set
of layers of T without Layer0. Let ϕ ∈ L(Layer0) such that T |= ϕ. By definition,
Circ[Layer0 ∪ Circ[Layer1 ∪ ...;

−→
C 1;
−→
Z 1];
−→
C 0;
−→
Z 0] |= ϕ.

Let γ be the set of prime implicates of Circ[Layer1 ∪ ...;
−→
C 1;
−→
Z 1] in L(T ′) ∩

L(Layer0). From the induction hypothesis we know that there are k ≥ 0 and
ϕ1, ...ϕk such that ϕ1 = γ and Circ[Layerk;

−→
C k;
−→
Z k] |= ϕk, and for all i such

that 1 ≤ i < k, ϕi ∈ L(Goali) and Circ[Layeri ∪ ϕi+1;
−→
C i;
−→
Z i] |= ϕi.

Recall that we assume that for every i < n, only predicates of L(Goali) can appear

39

in both Layeri, Layeri+1. From Theorem 4.2,

Circ[Layer0 ∪ γ;
−→
C 0;
−→
Z 0] |= ϕ ⇐⇒

Circ[Layer0 ∪ Circ[Layer1 ∪ ...;
−→
C 1;
−→
Z 1];
−→
C 0;
−→
Z 0] |= ϕ

Thus, taking ϕ0 = ϕ, and ϕ1 = γ provides the induction step, and Circ[Layer0 ∪

γ;
−→
C 0;
−→
Z 0] |= ϕ.

A.2 Theorem 4.4: LSA is Sound for Sensors to Actions

We prove our theorem by induction on the number of layers. By definition 4.1, if
T has only one layer (Layer0), then T |= ϕ iff Circ[Layer0;

−→
C 0;
−→
Z 0] |= ϕ. For

k = 0 we get that Circ[Layerk;
−→
C k;
−→
Z k] |= ϕk. This proves the theorem for n = 0.

Assume that the theorem is correct for n and we prove it for n + 1. Let T ′ be the
set of layers of T without Layer0. By definition, Circ[Layer0 ∪ Circ[Layer1 ∪

...;
−→
C 1;
−→
Z 1];
−→
C 0;
−→
Z 0] |= ϕ0.

From the induction hypothesis we know that T ′ |= ϕ1 because ϕ1 is the set of
prime implicates of Circ[Layer1 ∪ ...;

−→
C 1;
−→
Z 1] in L(T ′) ∩ L(Layer0). Recall that

we assume that for every i < n, only predicates of L(Goali) can appear in both
Layeri, Layeri+1. From Theorem 4.2,

Circ[Layer0 ∪ ϕ1;
−→
C 0;
−→
Z 0] |= ϕ0 ⇐⇒

Circ[Layer0 ∪ Circ[Layer1 ∪ ...;
−→
C 1;
−→
Z 1];
−→
C 0;
−→
Z 0] |= ϕ0

Thus, Circ[Layer0∪Circ[Layer1∪...;
−→
C 1;
−→
Z 1];
−→
C 0;
−→
Z 0] |= ϕ0, and the induction

step is complete.

B Complete PTTP Theories

Each layer in our implementation of the LSA loads a theory in its initialization.
This theory consists of two main fragments: a control component and a sensory
component. The control theories used in the different layers are different typically,
but the sensory modules are replicated multiple times. A diagram presenting the
configuration of a layer executable with the proper layer theory is presented in
Figure B.1. A more detailed view of the architecture (Figure B.2) shows the final
allocation of axioms to the different layers (notice that the combination L0,M1
appears twice; layers 0 and -1 use the same axioms but prove different goals).

40

file
Configuration

Layer

Layer (executable)

Layer 1 control theory

Layer 2 control theory

Layer 3 control theory

sensory module
theory

High−level

sensory module
theory

Low−level

selector
Theory

Layers −1,0 control theory

L3

L2

L1

L0 M1

M2

Fig. B.1. The selection of theories for a layer’s executable.

(L3 control
 M2 sensor)

(L2 control
 M2 sensor)

(L1 control
 M1 sensor)

(L0 control
 M1 sensor)

(L0 control
 M1 sensor)

(external/human
 axioms sent)

Goal−1

Actions

Output

Goal 0

Output

Goal 3

Goal 2

Goal 1

Output

Output

Output

Output

L−1

Sensors

Robot

Halt
Robot

Sensors

Sensors

Sensors

Domain
Planning

Destination
Seek

Obstacles
Avoid
L0

L1

L2

L2 input

L3 input

Sensors Planning
L4 input

L3

Input
Li

Layer

Sensors

Sonar and Odometry

L1 input

L0 input

Motion

Fig. B.2. Diagrammatic view of an LSA system controlling a robot.

In the following we present the complete theories that are used by a layer exe-
cutable, sorted into sensory module theories and control layer theories. These de-
tail the different theories presented in Figure B.1. The theories are presented in their
original form, a clausal-like form (after Skolemization) suitable as input to PTTP.
The following are conventions that are used by the input language of PTTP.

• In PTTP, predicate, function and constant symbols are named using English letter
sequences in which the the first letter is in lower caps. Variables are named using

41

English letter sequences in which the the first letter is in UPPER-CAPS.
• Variables are implicitly universally quantified and have the scope of the sentence

in which they appear.
• Semicolon (“;”) corresponds to a logical OR (“∨”).
• Comma (“,”) corresponds to a logical AND (“∧”).
• “not ” preceding a literal corresponds to a logical negation (“¬”).
• “:−” can be used to specify a clause that can be resolved only in a single direc-

tion (only literals on the right-hand side can be resolved against other clauses; a
resolvent child of this clause can resolve the left-hand side only when that child
is a single literal).

• Percentage sign (“%”) designates the beginning of a comment that is not inter-
preted by PTTP. We use these in the body of the axioms to explain axioms and
their purpose.

• PTTP handles equality (“=”) by a unification test. Thus, = means unifiable, and
=\= means not unifiable. It has no other equality predicate, and paramodulation
or other inference rules for equality are not used. For this reason we attempted
to minimize the use of function symbols and equality and to restrict such uses
to cases when the unification test is a correct mechanism for testing equality or
when equality is tested between arithmetic terms that can be evaluated at the
time of equality test. This attempt gives rise to several modeling choices, such as
choosing to model the number pi (π) using

pi(3.14159), not pi(C0) :−CO =\= 3.14159

instead of pi = 3.14159.
• The PROLOG predicate prove(goal,max,min, step) is defined by PTTP to try

to prove goal, and takes the following arguments: goal is the goal to prove, max
is the maximum depth of search for a proof (default = large number), min is
the minimum depth of the search for a proof (default = 0), and step is the depth
bound step size for the iterative deepening search (default = 1).

B.1 High-Level Sensor Module (M2)

This theory represents the sensor module used by layers 2 and 3. It includes the
following non-logical symbols:

Predicates • PTTP-internal predicates (<, =, etc.).
• pi(〈PI〉) – PI is the number π
• sonar reading(0..15, 〈Distance〉)
• sonar reading internal(0..15, 〈Distance〉) – the axioms in our layers refer

only to sonar reading internal(·) and not to sonar reading(·) because this
way sonar reading can be asserted (into Prolog and PTTP) without recompi-
lation of the rest of the axioms; we define similar “ internal” predicates for
curr loc, offset, and curr dir below.

42

• curr loc(〈Xinternal〉, 〈Y internal〉)
• curr loc internal(〈Xinternal〉, 〈Y internal〉)
• offset(〈XOff〉, 〈Y Off〉, 〈AngOff〉)
• offset internal(〈XOff〉, 〈Y Off〉, 〈AngOff〉)
• curr dir(〈Ainternal〉)
• curr dir internal(〈Ainternal〉)
• angle deg rad(〈DegA〉, 〈RadA〉) – converts angles in degrees to radians and

back (required for some of the semantic attachments that we use).
• cartesian(〈Logical position〉, 〈[X,Y]〉)
• vConnected(〈Logical position1 〉, 〈Logical position2 〉) – the two logical po-

sitions are visually connected (there is a line-of-sight between them)
• inCorridor(〈Logical position〉, 〈Corridor〉)
• room(〈Logical position〉)
• short distance(〈[X1, Y 1]〉, 〈[X2, Y 2]〉)
• distance threshold(X)
• current landmark(〈Landmark〉)
• at(〈Agent〉, 〈Logical position〉, 〈Situation〉))

Functions • PTTP-internal functions (−, abs, etc.)
• front(〈Logical position〉)

Constant Symbols • Numerical constants
• pedrito office, hector office, corridor entrance, etc. – logical positions in

the world.
• c1Alink31 , c1A1 , etc. – corridors
• r – robot
• s0 – initial situation (the current state of the world)

curr loc and curr dir are the robots location and direction with respect to the
robot’s coordinate system. When the robot is initialized it is put in a physical initial
position and these are set to 0, 0. As the robot proceeds in the world, the odome-
try measurements change and are integrated into the current location and direction.
offset specifies the transformation parameters from a global coordinate system
to the robot’s (in case we did not put the robot physically in position 0, 0 at ini-
tialization or we chose to introduce some displacement on top of the odometry
measurements.

Distances are in 1/10-in, and angles used by the rest of the layer are in radi-
ans in the range [−π, π]. Angles reported by the robot’s body are in 1/10-deg in
the range [0, 3600] and need to be converted (which we do in the axiom defining
curr dir internal).

is sensor theory is a Prolog predicate that is defined to hold for the theory de-
scribed henceforth. This allows us to ask different queries from the theory and to
join it with other axioms, as demonstrated at the end of the following script.

is_sensor_theory((

43

%%% Parameters %%%
pi(3.14159), (not_pi(C0) :- C0=\=3.14159),

%%% The following is an example of sensory input received
%%% by a layer:

% nsonars(16),
% sonar_reading(0, 40), sonar_reading(1, 40), % front
% sonar_reading(2, 40), sonar_reading(3, 1000),
% sonar_reading(4, 1000), sonar_reading(5, 1000), % left
% sonar_reading(6, 1000), sonar_reading(7, 1000),
% sonar_reading(8, 1000), sonar_reading(9, 1000), % rear
% sonar_reading(10, 1000),sonar_reading(11, 1000),
% sonar_reading(12, 1000),sonar_reading(13, 1000),%right
% sonar_reading(14, 1000),sonar_reading(15, 1000),
% curr_loc(280,230), curr_dir(3.14159/2+0.40),
% offset(0,0,0),
% current_landmark(front(elev(floor(2))))

% If we are dealing with multiple floors then the cartesian
% location above may fit two places in the two different
% floors, so another axis must be added to the position.

%%% Sensory Axioms %%%

% We add *_internal so that it is easy to assert and
% retract sensory input without compilation (saves time for
% sensory assertion).

(sonar_reading_internal(Snum, DistSonar):-
sonar_reading(Snum, DistSonar)),

(curr_loc_internal(Xinternal, Yinternal):- % subtract
curr_loc(Xhere, Yhere), % offset
offset_internal(XOff6, YOff6, AngOff6),
Xinternal is Xhere - XOff6,
Yinternal is Yhere - YOff6),

(curr_dir_internal(Ainternal):- % convert to rad and
curr_dir(Ang), % subtract offset
offset_internal(XOff6, YOff6, AngOff6),
angle_deg_rad(Ang - AngOff6, Ainternal)),

% The first translates [0,3600] to [-PI,PI]
(angle_deg_rad(DegA, RadA):-

var(RadA), pi(PI),
RadA is ((((integer(DegA)+1800) mod 3600)-1800)

/3600)*(2*PI)),
% The second translates [-PI,PI] to [-1800,1800]

(angle_deg_rad(DegA, RadA):-
var(DegA), pi(PI),
DegA is integer((RadA/(2*PI))*3600)),

(offset_internal(XOff,YOff,AngOff):-
offset(XOff,YOff,AngOff)),

%%% Map Axioms %%%

% Robotics lab at Stanford Gates building

cartesian(zero_pt,[0,0]),
cartesian(corridor_cross,[805,-300]),
cartesian(mid_lab,[2129,-945]),
cartesian(among_friends,[2080,60]),
cartesian(corridor2_cross,[3357,-638]),
cartesian(corridor_entrance,[397,519]),
cartesian(front(hector_office),[334,2301]),
cartesian(front(lise_office),[394,3896]),

44

cartesian(front(uri_office),[522,5939]),
cartesian(corridor_turn,[601,6929]),
cartesian(front(pedrito_office),[-594,7047]),
cartesian(pedrito_office,[-1136,7683]),
cartesian(mid_corridor3,[2515,5829]),
cartesian(front(chris_room),[4421,5740]),
cartesian(front(daphne_room),[4318,3838]),
cartesian(corridor2_entrance,[4524,1532]),
cartesian(mid_corridor2,[4817,-704]),

vConnected(corridor_cross,zero_pt),
vConnected(mid_lab,corridor_cross),
vConnected(among_friends,mid_lab),
vConnected(among_friends,corridor_cross),
vConnected(among_friends,corridor2_cross),
vConnected(mid_lab,corridor2_cross),
vConnected(zero_pt,corridor_entrance),
vConnected(corridor_cross,corridor_entrance),

inCorridor(corridor_entrance,c1A1),
inCorridor(front(hector_office),c1A1),
inCorridor(front(lise_office),c1A1),
inCorridor(front(uri_office),c1A1),
inCorridor(corridor_turn,c1A1),
inCorridor(corridor_turn,c1Alink31),
inCorridor(front(pedrito_office),c1Alink31),

room(pedrito_office), room(hector_office),
room(lise_office), room(uri_office),

% Interesting axioms: 1. Front of room is displaced from
% the room according to its direction. 2. rooms on the
% same corridor have identical x (or y) coordinates.

%%% Current Landmark %%%

% predicates: curr_loc, cartesian, current_landmark

(not_curr_loc(X,Y); not_cartesian(Place, Cartesian2);
not_short_distance([X,Y], Cartesian2);
current_landmark(Place)),

(short_distance([X1,Y1],[X2,Y2]):-
distance_threshold(Dist), abs(X1-X2)<Dist,
abs(Y1-Y2)<Dist),

(distance_threshold(100)),

(not_current_landmark(CurrPlace); at(r, CurrPlace, s0))

% The above assumes that the current location is one of
% the cartesian pairs in the map above. In general, we want
% to allow arbitrary locations and compute either the closest
% landmark or which room the robot is in. This is taken care
% of in the theory for layer 3 where we in fact need it to
% allow acting when we are in transit between landmarks.
)).
%%%%%%%%%%%%%%%%%% END OF LOGICAL THEORY %%%%%%%%%%%%%%%%%%%

sense :- is_sensor_theory(ThS), pttp(ThS).

% The following tests the sensor module in isolation.

testS :- sense, prove((curr_loc(X,Y))),
print(’current location = (’), print(X),
print(’,’), print(Y), print(’)’), nl.

45

The sentences outside the main is sensor theory declaration defining sense and
testS perform sensing (loading the axioms above into PTTP) and a single query
answering test (trying to prove that the current location is some X,Y , thus returning
the values of X,Y that satisfy the query) given some sensory input from the robot
(such as those commented out at the beginning of the script).

B.2 Layer 3 Control Theory (L3)

The following file contains the theory of the LSA for Layer 3. This theory together
with the high-level sensory theory (M2 in Section B.1) can translate logical loca-
tions into Cartesian positions and vice-versa, and can find plans that reach a certain
goal location from the current location. The axiomatization is that of high-level
actions, describing the entities for spatial reasoning as rooms, corridors, and room
fronts.

Our implementation of Layer 3 can be seen as taking a sentence describing a goal
situation (typically, this one is sent from the Input Layer) and producing a logical
location which is sent to Layer 2 and serves there as a goal location.

It includes the following nonlogical symbols:

Predicates • PTTP-internal predicates (<, =<, etc.).
• room(〈Logical position〉)
• corridor(〈Corridor〉)
• inCorridor(〈Logical position〉, 〈Corridor〉)
• vConnected(〈Logical position1 〉, 〈Logical position2 〉) – the two logical po-

sitions are visually connected (there is a line-of-sight between them)
• current landmark(〈Landmark〉)
• curr loc(〈Xinternal〉, 〈Y internal〉)
• cartesian(〈Logical position〉, 〈[X,Y]〉)
• pos between([X1, Y 1], [X,Y], [X2, Y 2]) – Cartesian position [X,Y] is in be-

tween Cartesian positions [X1, Y 1], [X2, Y 2]. This holds for [X,Y] if it inside
the rectangle defined by the line connecting two points [X1, Y 1], [X2, Y 2] and
the distance satisfying the max dist from line predicate (see Figure B.3).

• max dist from line(〈Max dist from line〉) – see pos between for expla-
nation

• intersect(〈Corridor1〉, 〈Corridor2〉) – corridors that intersect
• at static(〈Item〉, 〈Logical position〉) – Item is always at Logical position

(Item can be a logical position as well).
• at(〈Item〉, 〈Logical position〉, 〈Situation〉)
• doorTo(〈Door〉, 〈Room〉)
• vLinked(〈Logical position1 〉, 〈Logical position2 〉, 〈S〉) – locations that are

sometimes visually connected and sometimes not (e.g., elevators)

46

[X1,Y1]

[X2,Y2]

Fig. B.3. The rectangle defined by [X1, Y 1], [X2, Y 2], max dist from line

• eq(〈V 〉, 〈W 〉) – equality predicate that is sometimes used instead of the built-in
=

• roomLevelP lace(〈Logical position〉) – is this logical position a room-type
place?

• atgoal(〈Item〉, 〈Situation〉) – item is at the goal location in this situation
• goal location(〈Logical position〉)
• firstSit(〈S〉, 〈S1〉) – the situation (S1) that is immediately after s0 in the defi-

nition of situation S
• action(〈S〉, 〈A〉) – the last action A in a sequence defining a situation S

Functions • PTTP-internal functions (−, abs, etc.)
• between(〈Logical position1 ,Logical position2 〉) – a logical position which

corresponds to the region between Logical position1 ,Logical position2 (see
Figure B.3). Logical position1 ,Logical position2 are expected to correspond
to ovals specified by a center Cartesian position and a (fixed) radius.

• floor(〈Number〉) – takes a number and returns a logical location (the floor
indexed by this number)

• front(〈Logical position〉)
• result(〈A〉, 〈S〉) – the situation resulting from executing action A in situation

S
• elev(〈Floor〉) – the logical location of the elevators at floor Floor (whether

an elevator is on that floor or not)
Constant Symbols • Numerical constants
• r – robot
• rm218, rm132, etc. – rooms
• c1Aelev, c1A1 , etc. – corridors
• s0 – initial (current) situation

is_theory3((

%%% Spatial Reasoning Domain Theory %%%
%%% Spatial Representation of the floors
% Floor 2 -- rooms

room(rm218), room(rm208),
room(rm202), room(rm201),
room(copy2A), room(kitchen2A),
room(library2A),

% Floor 1 -- rooms
room(rm132), room(rm104),
room(rm134),
room(c1A1entrance), %the entrance to the corridor 1 of 1A.
room(c1A2entrance), %the entrance to the corridor 2 of 1A.

% Floor 2 -- corridors
corridor(c2A1), corridor(c2A2),
corridor(c2Alink1),corridor(c2Alink2),

47

corridor(c2Aelev), corridor(c2Aksl),
% Floor 1 -- corridors

corridor(c1A1), corridor(c1A2),
corridor(c1Alink1),corridor(c1Alink2),
corridor(c1Aelev), corridor(c1Arobotics),
corridor(c1Alink31),corridor(c1Alink32),

% Floor 2 -- rooms in corridors
inCorridor(front(rm218), c2A1),
inCorridor(front(rm208), c2A1),
inCorridor(front(rm208), c2Alink1),
inCorridor(front(rm202), c2Alink1),
inCorridor(front(rm201), c2Alink1),
inCorridor(front(rm201), c2A2),
inCorridor(front(kitchen2A), c2A2),
inCorridor(front(copy2A), c2A1),
inCorridor(front(library2A), c2A1),
inCorridor(front(library2A), c2Aelev),

% Floor 1 -- rooms in corridors
inCorridor(front(rm104), c1Aelev),
inCorridor(front(rm132), c1Alink31),
inCorridor(front(rm132), c1A1),
inCorridor(front(rm134), c1Alink31),
inCorridor(front(kitchen1A), c1A2),
inCorridor(front(copy1A), c1A2),

%%% Spatial Representation of intermediate positions. %%%
%% This is important for planning what to do when the
%% robot is in an intermediate position between landmarks.

(vConnected(between(Pos1,Pos2),Pos1) :-
vConnected(Pos1,Pos2)),

(vConnected(between(Pos1,Pos2),Pos2) :-
vConnected(Pos1,Pos2)),

(current_landmark(between(Pos1,Pos2)) :-
vConnected(Pos1,Pos2),
curr_loc(X,Y),
cartesian(Pos1,C1), cartesian(Pos2,C2), C1\=C2,
pos_between(C1, [X,Y], C2)),

max_dist_from_line(150),
(not_max_dist_from_line(Dist1):- Dist1\=150),

(pos_between([Xa,Ya], [X,Y], [Xb,Yb]) :-
max_dist_from_line(Dist),
Dist > (abs((Ya-Yb)*X + (Xb-Xa)*Y +Yb*Xa -Ya*Xb)

/ sqrt((Ya-Yb)**2 + (Xb-Xa)**2)),
(Xa < Xb; (Xa >= X, X >= Xb)),
(Xa > Xb; (Xa =< X, X =< Xb)),
(Ya < Yb; (Ya >= Y, Y >= Yb)),
(Ya > Yb; (Ya =< Y, Y =< Yb))),

% The last formula is the result of computing the line
% formula for [Xa,Ya],[Xb,Yb] and then computing the distance
% of the point [X,Y] to this line. The line formula is:
% Ax+By+C=0 for A=Ya-Yb B=Xb-Xa C = Yb*Xa - Ya*Xb
% The distance between a point [X,Y] and a line is
% |A*X + B*Y + C| / sqrt(Aˆ2 + Bˆ2)
% We make sure that [X,Y] is indeed in the range between
% the two other points, i.e., that it is in a box defined
% by the two endpoints.

intersect(c2A2,c2Aelev), % the corridors intersect

%%% Spatial domain for using the elevator

at_static(rm218,floor(2)), at_static(rm132,floor(1)),

48

at_static(c1Aelev,floor(1)), at_static(c2Aelev,floor(2)),

(not_at_static(X,L) ; at(X,L,S)),
% constant "at" is universal for all situations

(not_at(L1,L2,S); not_at(L2,L3,S); at(L1,L3,S)),
% Transitivity

% Entrance to 1A wing.
doorTo(c1A1entrance,c1Aelev), doorTo(c1A1entrance,c1A1),
doorTo(c1A2entrance,c1Aelev), doorTo(c1A2entrance,c1A2),
(not_doorTo(L,C) ; inCorridor(door(L,C),C)),

% Notice: layer 3 has an abstract "elevator of floor X",
% whereas layer 2 considers two elevators that "implement"
% this abstract elevator.

room(elev(floor(1))),
room(elev(floor(2))),

% linking elevator entrances and corridors
inCorridor(front(elev(floor(1))),c1Aelev),
inCorridor(front(elev(floor(2))),c2Aelev),
vLinked(elev(floor(1)),elev(floor(2))),

% Axioms about visual links between places.
(not_doorTo(L,C); vLinked(door(L,C),C)), % doors to rooms
(not_room(L); vLinked(L,front(L))), % rooms and room fronts

(not_corridor(C) ; not_inCorridor(L1,C) ;
not_inCorridor(L2,C) ; vConnected(L1,L2)),

(not_vLinked(L1,L2) ; vConnected(L1,L2)),

(not_vLinked(L1,L2) ; vLinked(L2,L1)),
(not_vConnected(L1,L2) ; vConnected(L2,L1)),

(not_intersect(C1,C2); inCorridor(intersection(C1,C2),C1)),
(not_intersect(C1,C2); inCorridor(intersection(C1,C2),C2)),

% corridor intersections

%%% Situation-dependent axioms: Theory of Action
(not_current_landmark(CurrPlace1); at(r, CurrPlace1, s0)),
at(eyal,rm218,s0),
at(pedrito,rm132,s0),

%%% Effect Axioms

% Simple move
(not_at(r,L0,S) ; not_vConnected(L0,L) ;

at(r,L,result(moveto(L),S))),

%%% Domain Constraints
% Notice the use of equality which is in fact equality + UNA:

(not_at(X,L1,S) ; not_at(X,L2,S) ; not_roomLevelPlace(L1);
not_roomLevelPlace(L2) ; eq(L1,L2)),

(not_at(X,L1,S) ; not_at(X,L2,S) ; not_floor(L1) ;
not_floor(L2) ; eq(L1,L2)),

% Defining what is a place that is a room.
(roomLevelPlace(L1):- (room(L1);corridor(L1);

(eq(L1,front(L)), room(L)))),
(roomLevelPlace(L1) ; (not_room(L1), not_corridor(L1),

(not_eq(L1,front(L)) ; not_room(L)))),

%%% GOALS %%%
%%% *** -> perhaps coming from the level above:
% goal(sg), at(r,floor(1),sg),

(atgoal(Someone, Somesituation):-
goal_location(GoalLocation),
at(Someone, GoalLocation, Somesituation)),

%%% Plan management

49

(firstSit(result(A,S),S1):- firstSit(S,S1)),
firstSit(result(A,s0),result(A,s0)),
action(result(A,S),A),

%%% Equality
(eq(L1,L2):-nonvar(L1),nonvar(L2),L1=L2),
(not_eq(L1,L2):-L1\=L2)

)).
%%%%%%%%%%%%%% END OF LOGICAL THEORY %%%%%%%%%%%%%%%%%%%%%%

% instead the following could be ’(goal_location(rm208)))’.
subsuming_thy(no_subs_thy).

is_theory((Th3,ThS,ThSub)) :- is_theory3(Th3),
is_sensor_theory(ThS), subsuming_thy(ThSub).

lay3load :- is_theory(Th), pttp(Th).

add_proof_landmark(Lnd) :-
latch_clauses(Cl), pttp_latch((Cl,at(r,Lnd,s0))),!.

add_proof_landmark(_).

before_proof:-
print(’starting to prove the robot location’),
prove(at(r,CurrLandmark,s0),12),
print(’proved the robot is in ’), print(CurrLandmark),
((CurrLandmark = between(P1,P2),

add_proof_landmark(CurrLandmark)) ; true), !.

% The following is the PROLOG goal called by Layer 2’s
% executable at every cycle (‘goal_layer3(X)’):
goal_layer3(target_landmark(TargetLandmark)) :-

before_proof,
print(’starting to prove the plan for the robot’),
prove(atgoal(r,S),20),
print(’proved the plan is ’), print(S),
print(’starting to find the target landmark’),
((S\=s0, prove(firstSit(S,S1),50),

prove(at(r,TargetLandmark,S1),20));
% true ->

prove(at(r,TargetLandmark,s0),20)),
print(’found the landmark ’), print(TargetLandmark),
save_result(go_to(TargetLandmark)).

goal_layer3(target_landmark(Target)) :-
print(’failed to prove.’), go_to(Target).

goal_layer3(failed_proof_layer3).

save_result(Pred) :-
retractall(Pred), assert(Pred).

% Test code for Layer 3:
out3:- lay3, prove(at(r,rm104,S)), prove(firstSit(S,S1)),

prove(action(S1,A)),
prove(at(r,Landmark,S1)),
print(’Plan = "’), print(S), print(’"’), nl,
print(’Landmark = "’), print(Landmark),
print(’" using the action "’), print(A), print(’"’).

A sample proof with this theory is the following. We begin by listing the axioms as
read into the PTTP theorem prover (we omit most of the axioms that are not used in
the sample proof). PTTP numbers the axioms with consecutive numbers, and uses
this numbering to present the proof. 8

8 The Prolog output here and in the rest of the appendix was set to fit the page width, and

50

PTTP input formulas:
1 room(rm218).
...

45 current_landmark(between(_G483, _G486)):-
vConnected(_G483, _G486), curr_loc(_G526, _G527),
cartesian(_G483, _G533), cartesian(_G486, _G539),
_G533\=_G539,pos_between(_G533,[_G526,_G527],_G539).

...
71 not_vConnected(_G787, _G788);vConnected(_G788, _G787).
72 not_intersect(_G533, _G539);

inCorridor(intersection(_G533, _G539), _G533).
73 not_intersect(_G533, _G539);

inCorridor(intersection(_G533, _G539), _G539).
74 not_current_landmark(_G1020);at(r, _G1020, s0).
...
77 not_at(r, _G1047, _G779);not_vConnected(_G1047, _G775);

at(r, _G775, result(moveto(_G775), _G779)).
78 not_at(_G526, _G787, _G779);not_at(_G526, _G788, _G779);

not_roomLevelPlace(_G787);not_roomLevelPlace(_G788);
eq(_G787, _G788).

79 not_at(_G526, _G787, _G779);not_at(_G526, _G788, _G779);
not_floor(_G787);not_floor(_G788);eq(_G787, _G788).

80 roomLevelPlace(_G787):-room(_G787);corridor(_G787);
eq(_G787, front(_G775)), room(_G775).

81 roomLevelPlace(_G787);
not_room(_G787),not_corridor(_G787),

(not_eq(_G787, front(_G775)); not_room(_G775)).
82 atgoal(_G1187, _G1188):-goal_location(_G1193),

at(_G1187, _G1193, _G1188).
83 firstSit(result(_G1208, _G779), _G1206):-

firstSit(_G779, _G1206).
84 firstSit(result(_G1208, s0), result(_G1208, s0)).
85 action(result(_G1208, _G779), _G1208).
...
96 cartesian(zero_pt, [0, 0]).
...
112 cartesian(mid_corridor2, [4817, -704]).
113 vConnected(corridor_cross, zero_pt).
114 vConnected(mid_lab, corridor_cross).
...
118 vConnected(mid_lab, corridor2_cross).
...
132 not_curr_loc(_G1794, _G1795);

not_cartesian(_G1800, _G1801);
not_short_distance([_G1794, _G1795], _G1801);
current_landmark(_G1800).

133 short_distance([_G1826, _G1829], [_G1832, _G1835]):-
distance_threshold(_G1841),abs(_G1826-_G1832)<_G1841,
abs(_G1829-_G1835)<_G1841.

134 distance_threshold(100).
135 not_current_landmark(_G1870);at(r, _G1870, s0).
136 no_subs_thy.

PTTP to Prolog translation time: 1.04 seconds,
including printing
Prolog compilation time: 0.28 seconds, including printing
Start cycle 1
.....
PTTP input formulas:
137 sonar_reading(0, 219).
...
152 sonar_reading(15, 142).
153 curr_loc(0, 0).
154 curr_dir(3419).

also shortened by removing duplicate and unnecessary items such as proof-search progress
indicators. We put “...” where such parts are omitted.

51

155 offset(0, 0, 0).
156 goal_location(corridor2_cross).

PTTP to Prolog translation into latch time: 0.03 seconds,
including printing
Assserting into Prolog time: 0.02 seconds, including printing
Start cycle 3
’starting to prove the robot location’
Proof time: 73 inferences in 0.01 seconds, including printing
Proof:
Goal# Wff# Wff Instance
----- ---- ------------

[0] 0 query :- [1].
[1] 74 at(r, zero_pt, s0) :- [2].
[2] 132 current_landmark(zero_pt) :- [3],[4],[5].
[3] 153 curr_loc(0, 0).
[4] 96 cartesian(zero_pt, [0, 0]).
[5] 133 short_distance([0, 0], [0, 0]) :- [6].
[6] 134 distance_threshold(100).

’proved the robot is in ’zero_pt’
starting to prove the plan for the robot’
Proof time: 175491 inferences in 16.25 seconds,
including printing
Proof:
Goal# Wff# Wff Instance
----- ---- ------------

[0] 0 query :- [1].
[1] 82 atgoal(r, result(moveto(corridor2_cross), result(moveto(mid_lab),

result(moveto(corridor_cross), s0)))) :- [2] , [3].
[2] 156 goal_location(corridor2_cross).
[3] 77 at(r, corridor2_cross, result(moveto(corridor2_cross),

result(moveto(mid_lab), result(moveto(corridor_cross),
s0)))) :- [4] , [16].

[4] 77 at(r, mid_lab, result(moveto(mid_lab),
result(moveto(corridor_cross), s0))) :- [5] , [14].

[5] 77 at(r, corridor_cross, result(moveto(corridor_cross),
s0)) :- [6] , [12].

[6] 74 at(r, zero_pt, s0) :- [7].
[7] 132 current_landmark(zero_pt):- [8],[9],[10].
[8] 153 curr_loc(0, 0).
[9] 96 cartesian(zero_pt, [0,0]).

[10] 133 short_distance([0,0], [0,0]):- [11].
[11] 134 distance_threshold(100).
[12] 71 vConnected(zero_pt, corridor_cross) :- [13].
[13] 113 vConnected(corridor_cross, zero_pt).
[14] 71 vConnected(corridor_cross, mid_lab) :- [15].
[15] 114 vConnected(mid_lab, corridor_cross).
[16] 118 vConnected(mid_lab, corridor2_cross).
’proved the plan is ’result(moveto(corridor2_cross), result(moveto(mid_lab),

result(moveto(corridor_cross), s0)))’

starting to find the target landmark’
Proof time: 4 inferences in 0.01 seconds, including printing
Proof:
Goal# Wff# Wff Instance
----- ---- ------------

[0] 0 query :- [1].
[1] 83 firstSit(result(moveto(corridor2_cross), result(moveto(mid_lab),

result(moveto(corridor_cross),s0))),
result(moveto(corridor_cross),s0)) :- [2].

[2] 83 firstSit(result(moveto(mid_lab),
result(moveto(corridor_cross),s0)),
result(moveto(corridor_cross),s0)) :- [3].

[3] 84 firstSit(result(moveto(corridor_cross),s0),
result(moveto(corridor_cross),s0)).

Proof time: 418 inferences in 0.03 seconds, including printing
Proof:

52

Goal# Wff# Wff Instance
----- ---- ------------

[0] 0 query :- [1].
[1] 77 at(r, corridor_cross, result(moveto(corridor_cross), s0)) :-

[2], [8].
[2] 74 at(r, zero_pt, s0) :- [3].
[3] 132 current_landmark(zero_pt):-[4],[5],[6].
[4] 153 curr_loc(0, 0).
[5] 96 cartesian(zero_pt, [0, 0]).
[6] 133 short_distance([0,0], [0,0]) :- [7].
[7] 134 distance_threshold(100).
[8] 71 vConnected(zero_pt, corridor_cross):- [9].
[9] 113 vConnected(corridor_cross, zero_pt).

’found the landmark ’corridor_cross

B.3 Layer 2 Control Theory (L2)

The following file contains the theory of the LSA for Layer 2. This theory together
with the high-level sensory theory (M2 in Section B.1) translates logical locations
into Cartesian positions and vice-versa, and performs mid-level action planning,
such as reasoning about using the elevator.

Our implementation of Layer 2 can be seen as taking a sentence describing a goal
situation from Layer 3 and producing a Cartesian position which is sent to Layer 1
and serves there as a target location.

It includes the following non-logical symbols:

Predicates • PTTP-internal predicates (\=, =, etc.).
• move cmd(〈X〉, 〈Y 〉)
• target landmark(〈Logical position〉)
• elevator related(〈Logical position〉) – the location Logical position is related

to running the elevators
• cartesian(〈Logical position〉, 〈[X,Y]〉)
• current landmark(〈Landmark〉)
• elevator(〈Logical position〉)
• at(〈Agent〉, 〈Logical position〉, 〈Situation〉)
• firstSit(〈S〉, 〈S1〉) – the situation (S1) that is immediately after s0 in the defi-

nition of situation S
• action(〈S〉, 〈A〉) – the last action A in a sequence defining a situation S
• vLinked(〈Logical position1 〉, 〈Logical position2 〉, 〈S〉) – locations that are

sometimes visually connected and sometimes not (e.g., elevators)
Functions • PTTP-internal functions (−, abs, etc.)
• floor(〈Number〉) – takes a number and returns a logical location (the floor

indexed by this number)
• elev(〈Floor〉) – the logical location of the elevators at floor Floor (whether

an elevator is on that floor or not)
• front(〈Logical position〉)

53

• result(〈A〉, 〈S〉) – the situation resulting from executing action A in situation
S

• elevEntr(〈E〉, 〈Floor〉) – the logical location of the elevator entrance on a
given floor (E may be any of the elevators)

• moveto(L), orderElev(Floor) – action schemas
Constant Symbols • Numerical constants
• r – robot
• elev1, elev2 – elevators
• callElev, wait – actions

is_theory2((

%%% Lower-Level Spatial Reasoning Domain Theory %%%
% Currently, we can execute only motion commands, so we
% distinguish those from other commands (such as ordering
% the elevator), and only the former get executed (get
% sent to layer 1).

(move_cmd(X,Y):- target_landmark(Logical),
not_elevator_related(Logical),
cartesian(Logical, [X,Y])),

elevator_related(elev(floor(Floor))),
(elevator_related(front(elev(floor(Floor2)))) :-

current_landmark(elev(floor(F3)))),
(elevator_related(Logical) :- elevator(Logical)),

(not_elevator_related(Logical):-
Logical \= elev(floor(Floor)),
(Logical \= front(elev(floor(Floor2)));

not_current_landmark(elev(floor(F3)))),
not_elevator(Logical)),

% Notice that layer 3 has an abstract "elevator of floor
% X", whereas layer 2 considers two elevators that
% "implement" this abstract elevator.

(move_cmd(X,Y):- target_landmark(Landmark),
at(r,Landmark,Sl1), firstSit(Sl1,Sfirst),
at(r,Inter,Sfirst), cartesian(Inter, [X,Y])),

%%% Plan management

(firstSit(result(Af1,Sf1),Sf2):- firstSit(Sf1,Sf2)),
firstSit(result(Af2,s0),result(Af2,s0)),
action(result(Af3,Sf3),Af3),

%%%% Elevator specific axioms %%%%

(not_target_landmark(elev(floor(F5)));
(target_landmark(elev1), target_landmark(elev2))),

% translate from layer 3’s elevator terminology
% to layer 2’s more specific terminology

elevator(elev1),
elevator(elev2),
(not_elevator(Elev):- Elev\=elev1, Elev\=elev2),
(not_elevator(E); at(elevEntr(E,floor(X)),floor(X),S2)),

vLinked(elevEntr(E,floor(Floor3)),
front(elev(floor(Floor3))),S3),

% linking elevator entrances and elevator fronts.

% Axioms about (dynamic) visual links between places.

54

(not_elevator(E) ; not_at(E,floor(F),S2) ;
vLinked(E,elevEntr(E,floor(F)),S2)),

% linking elevators and elevator entrances
(not_vLinked(L1,L2,S1) ; vLinked(L2,L1,S1)),

%%%% Effect Axioms %%%%

% Simple move:
% Moving to a location that is visually linked to the
% robot’s current location results in the robot being
% at the target location.

(not_at(r,L0,S8) ; not_vLinked(L,L0,S8) ;
at(r,L,result(moveto(L),S8))),

% Calling the elevator:
% The robot stays put at the result of calling the
% elevator and after some time an elevator must come.

(not_at(r,front(elev(floor(F1))),S4) ;
(at(r,front(elev(floor(F1))),result(callElev,S4)),
(at(elev1,floor(F1), result(wait,result(callElev,S4)));
at(elev2,floor(F1), result(wait,result(callElev,S4)))))),

% Waiting: the robot does not move (but elevators might).
(not_at(r,X,S); at(r,X,result(wait,S))),

% Command the elevator:
% If the robot is in the elevator, then ordering the
% elevator to move to a different floor results in the
% elevator moving to that floor (after some waiting period)
% and the robot is still at that elevator.

(not_at(r,E,S5) ; not_elev(E);
(at(r,E,result(orderElev(floor(F2)),S5)),
at(E,floor(F2),

result(wait,result(orderElev(floor(F2)),S5)))))

%%%% Frame Axioms that were omitted in the running system:
%
% (not_at(elev1,floor(X),S) ;
% at(elev1,floor(X),result(moveto(L),S))),
% % The elevator does not move by itself.
% (at(r,L,result(callElev,S)); not_at(r,L,S)),
% (not_at(r,L,S) ; at(r,L,result(orderElev(F),S))),
% % The elevator does not move by itself.
% (eq(L1,L2):-nonvar(L1),nonvar(L2),L1=L2),
% (not_eq(L1,L2):-L1\=L2)
% % Equality
%
%%%% These frame axioms make the theorem prover go balistic
%%%% with respect to time spent proving. All of the sudden,
%%%% it takes it much longer than previously. They are not
%%%% needed for our purposes, so we omitted them.
)).
%%%%%%%%%%%%%%%%%% END OF LOGICAL THEORY %%%%%%%%%%%%%%%%%

% Put control theory (L2) and sensory theory (M2) together:
is_theory((Th2,ThS)):-is_theory2(Th2),is_sensor_theory(ThS).

% Loading a theory into PTTP
lay2load :- is_theory(Th), pttp(Th).

% The following is the goal that is called by Layer 2’s
% executable at every cycle (‘goal_layer2(X)’) (Right
% now subsumption in this layer is done by negation as
% failure (the parameter "15" below indicates steps limit)):
goal_layer2(destination(GoalX,GoalY)) :-

prove((move_cmd(GoalX,GoalY)), 15),
print(’proof succeeded. move to coordinates (’),
print(GoalX), print(’,’), print(GoalY), print(’)’).

55

goal_layer2(failed_proof_layer2):-print(’failed proof. ’).

This layer proves at every cycle that the current destination of the robot is specified
by some Cartesian coordinates GoalX,GoalY . When Layer 3 introduces a ground
sentence of the form target landmark(〈Logical position〉) and Logical sentence
is instantiated with some landmark term, then subsumption is used to remove pre-
vious sentences of that form (sent from Layer 3), and it is also used to conclude
that the new set of target landmarks includes only the given position (and possibly
others that the layer may have as fixed target landmarks 9).

A sample proof with this theory is the following. Again, we begin by listing the
axioms as read into the PTTP theorem prover and omit most of the axioms that are
not used in the sample proof. PTTP numbers the axioms with consecutive numbers,
and uses this numbering to present the proof. We put “...” where parts are omitted.

1 move_cmd(_G221, _G222):-target_landmark(_G227),
not_elevator_related(_G227),
cartesian(_G227, [_G221, _G222]).

...
5 not_elevator_related(_G227):-_G227\=elev(floor(_G250)),

(_G227\=front(elev(floor(_G264)));
not_current_landmark(elev(floor(_G270)))),

not_elevator(_G227).
...
11 elevator(elev1).
12 elevator(elev2).
13 not_elevator(_G437):-_G437\=elev1, _G437\=elev2.
...
18 not_at(r,_G532,_G533); not_vLinked(_G538,_G532,_G533);

at(r, _G538, result(moveto(_G538), _G533)).
19 not_at(r, front(elev(floor(_G565))), _G559);

at(r, front(elev(floor(_G565))), result(callElev, _G559)),
(at(elev1, floor(_G565), result(wait, result(callElev, _G559)));
at(elev2, floor(_G565), result(wait, result(callElev, _G559)))).

20 not_at(r,_G221,_G618);at(r,_G221, result(wait,_G618)).
21 not_at(r,_G454,_G632);not_elev(_G454);

at(r, _G454, result(orderElev(floor(_G651)),_G632)),
at(_G454, floor(_G651),
result(wait, result(orderElev(floor(_G651)),_G632))).

...
31 cartesian(corridor_cross, [805, -300]).
...
68 distance_threshold(100).
69 not_current_landmark(_G1273);at(r, _G1273, s0).

PTTP to Prolog translation time: 0.56 seconds,
including printing
Prolog compilation time: 0.18 seconds, including printing
Start cycle 1
...
PTTP input formulas:
70 sonar_reading(0, 140).
...
85 sonar_reading(15, 77).
86 curr_loc(38, -103).
87 curr_dir(2962).

9 In case more than one target landmark is specified, the engineer providing the axioms is
expected to supply some precedence between them, or the theorem prover may find a proof
that one of the landmarks is achieved.

56

88 offset(0, 0, 0).
89 target_landmark(corridor_cross).
90 goal_location(corridor2_cross).

PTTP to Prolog translation into latch time: 0.02 seconds,
including printing
Assserting into Prolog time: 0.04 seconds,
including printing
Start cycle 994
Proof time: 5 inferences in 0 seconds, including printing
Proof:
Goal# Wff# Wff Instance
----- ---- ------------

[0] 0 query :- [1].
[1] 1 move_cmd(805, -300) :- [2] , [3] , [5].
[2] 89 target_landmark(corridor_cross).
[3] 5 not_elevator_related(corridor_cross):-[4].
[4] 13 not_elevator(corridor_cross).
[5] 31 cartesian(corridor_cross, [805, -300]).

’proof succeeded. move to coordinates (’805,-300’)’

B.4 Low-Level Sensor Module (M1)

This theory represents the sensor module used by layers 1, 0, and -1. It uses and
makes available values for the following predicates:

• pi(3.14159) – the number π to five decimal digits of precision; ideally, should be
a constant.

• sonar reading(0..15, 〈Distance〉), sonar reading internal(0..15, 〈Distance〉) –
sonar reading returns the distance from the robot of the object observed by
the given sensor. Ideally, should be a function. The axioms in our layers re-
fer only to sonar reading internal and not to sonar reading because this way
sonar reading can be asserted (into Prolog and PTTP) without recompilation of
the rest of the axioms; M1 simply translates sonar reading assertions into the
equivalent sonar reading internal predicates. By the same token, we also de-
fine “ internal” predicates for curr loc, offset , and curr dir described below.
For similar reasons, we define “ external” predicates for destination, object ,
distance, direction, go fwd , and go turn predicates described below to facili-
tate passing them between layers.

• curr loc(〈X〉, 〈Y 〉), curr loc internal(〈X〉, 〈Y 〉) – the robot’s location with re-
spect to the robot’s coordinate system; ideally, should be a constant.

• curr dir(〈Angle〉), curr dir internal(〈Angle〉) – the robot’s orientation with
respect to the robot’s coordinate system; ideally, should be a constant.

• offset(〈XOff 〉, 〈YOff 〉, 〈AngOff 〉), offset internal(〈XOff 〉, 〈YOff 〉, 〈AngOff 〉)
– the transformation parameters from the global coordinate system to the robot’s.

• angle deg rad(〈DegA〉, 〈RadA〉) – converts angles in degrees to radians and
back (required for some of the semantic attachments that we use).

• destination(〈X〉, 〈Y 〉), external destination(〈X〉, 〈Y 〉) – the goal location in-
put by Layer 2 into Layer 1; M1 translates the external destination input from
Layer 2 into the destination used by Layer 1.

57

• object(〈New Obj 〉), external object(〈New Obj 〉) – a new object input by Layer
1 into Layer 0; M1 translates the external object input from Layer 1 into the
object used by Layer 0.

• distance(〈New Obj 〉, 〈NO Dist〉), external distance(〈New Obj 〉, 〈NO Dist〉)
– distance of new object from robot; M1 translates the external distance input
from Layer 1 into the distance used by Layer 0.

• direction(〈New Obj 〉, 〈NO Dir〉), external direction(〈New Obj 〉, 〈NO Dir〉)
– direction of new object from robot; M1 translates the external direction input
from Layer 1 into the direction used by Layer 0.

• go fwd(〈Speed〉), external fwd(〈Speed〉) – speed at which robot should move
forward; ideally, should be a constant. M1 translates the external fwd input
from Layer 0 into the go fwd used by Layer -1.

• go turn(〈Angle〉), external turn(〈Angle〉) – angle robot should turn; ideally,
should be a constant. M1 translates the external turn input from Layer 0 into
the go turn used by Layer -1.

Note that the robot’s coordinate system does not move with the robot. Distances
are in 1/10-in, angles are in radians in the range [−π, π]. (Note: input angles are in
1/10-deg in the range [0, 3600] and, thus, need to be converted.)

is_sensor_theory((

%%% Parameters %%%

% Note that, for practicality, all of the constants and functions
% described in this module are represented as predicates.

pi(3.14159), (not_pi(C0) :- C0=\=3.14159),

%%% Sensor Input %%%

% We add *_internal so that it is easy to assert and retract
% sensory input without compilation (saves time for sensory
% assertion).
(sonar_reading_internal(Snum, DistSonar):-

sonar_reading(Snum, DistSonar)),

(curr_loc_internal(Xinternal, Yinternal):- % subtract offset
curr_loc(Xhere, Yhere),
offset_internal(XOff6, YOff6, AngOff6),
Xinternal is Xhere - XOff6,
Yinternal is Yhere - YOff6),

(curr_dir_internal(Ainternal):- % convert to rad & subtract offset
curr_dir(Ang),
offset_internal(XOff6, YOff6, AngOff6),
angle_deg_rad(Ang - AngOff6, Ainternal)),

% Translate angles from [0,3600] to [-PI,PI].
(angle_deg_rad(DegA, RadA):-

pi(PI),
var(RadA),
RadA is ((((integer(DegA)+1800) mod 3600)-1800)/3600)*(2*PI)),

% Translate angles from [-PI,PI] to [-1800,1800].
(angle_deg_rad(DegA, RadA):-

pi(PI),

58

var(DegA),
DegA is integer((RadA/(2*PI))*3600)),

(offset_internal(XOff,YOff,AngOff):-
offset(XOff,YOff,AngOff)),

% The following is needed to incorporate L2’s inputs into L1.
(destination(DestX,DestY):- external_destination(DestX,DestY)),

% The following are needed to incorporate L1’s inputs into L0.
(object(New_Obj):- external_object(New_Obj)),
(distance(New_Obj, NO_Dist):- external_distance(New_Obj, NO_Dist)),
(direction(New_Obj, NO_Dir):- external_direction(New_Obj, NO_Dir)),

% The following are needed to incorporate L0’s inputs into L-1.
(go_fwd(Sp):- external_fwd(Sp)),
(go_turn(An):- external_turn(An))

)).

% Load theory into PTTP.
sense :- is_sensor_theory(ThS), pttp(ThS).

% Test the sensor module in isolation.
testS :- sense, prove((curr_loc(X,Y))), print(’current location = (’),

print(X), print(’,’), print(Y), print(’)’), nl.

B.5 Layer 1 Control Theory (L1)

This file contains the theory of the LSA for Layer 1. The theory implements des-
tination seeking. It receives a position from Layer 2 in Cartesian coordinates and
greedily tries to move the robot in that direction. It does so by taking advantage
of Layer 0’s obstacle-avoidance approach; it passes to Layer 0 a “virtual pushing
object” whose “location” is close to the robot in the quadrant opposite the goal lo-
cation so that Layer 0, in attempting to avoid obstacles, will tend to move the robot
away from the pushing object and in the desired direction. Layer 1 uses the robot’s
current location and orientation provided by the low-level sensory theory (M1 in
Section B.4) to compute the specific quadrant for this pushing object.

The theory includes the following predicate symbols:

• PTTP-internal predicates (le, = \ =, etc.)
• pi, object, distance, and direction are as described for the low-level sensor

module (M1).
• curr loc internal and curr dir internal are input from M1 and are as de-

scribed there.
• destination(〈X〉, 〈Y 〉) – external destination(〈X〉, 〈Y 〉) input from Layer 2,

translated by the sensor layer to destination(〈X〉, 〈Y 〉); [X,Y] are the coordi-
nates of the goal destination.

• margin(50) – maximum distance (along both axes) of robot from destination

59

for us to consider the robot to be at the destination; ideally, should be a constant.
• marginal distance(〈X1〉, 〈Y 1〉, 〈X2〉, 〈Y 2〉) – true iff [X1, Y 1] is within the

margin of [X2, Y 2].
• nquads(8) – number of quadrants space around robot is divided into; ideally,

should be a constant.
• quadrant(〈X〉, 〈Y 〉, 〈Quad〉) – determines the quadrant in which [X,Y] falls;

ideally, should be a function.
• quad angle(〈Quad〉, 〈Ang〉) – determines the angle of the specified quadrant

relative to the robot; ideally, should be a function.
• angle world vs robot(〈WorldAng〉, 〈LocalAng〉) – converts an angle in the

global coordinate system into the robot’s local coordinate system; ideally, should
be a function.

• between minus and plus(PI, 〈Ang1〉, 〈Ang2〉) – Ang2 is the renormalization
of Ang1 to be between −PI and PI where PI is π.

• push object(〈PUSH OBJECT 〉)
• push object dist(20) – default distance for the pushing object; ideally, should

be a constant.
• has push object(〈Quad〉)

Function symbols used include the PTTP-internal functions (−, abs, etc.). Constant
symbols used include numerical constants and z, the virtual pushing object.

The theory follows:

is_theory1((

%%%% INPUT %%%

% constants: curr_loc_internal, curr_dir_internal, destination

% Note that, for practicality, these and all other constants and
% functions described in this layer are represented as predicates.

%%% PARAMETERS %%%

pi(3.14159), (not_pi(C0) :- C0=\=3.14159),
margin(50), (not_margin(MARG) :- MARG=\=50),

% Margin to destination is 50

push_object(z),

(not_push_object(PUSH_OBJECT);
not_curr_loc_internal(Xhere, Yhere);
not_destination(Xthere, Ythere);
marginal_distance(Xhere, Yhere, Xthere, Ythere);
object(PUSH_OBJECT)),

% We consider adding an object only if we are too far from
% the destination.

(marginal_distance(X1,Y1,X2,Y2);
not_margin(MARGIN);
le(MARGIN,abs(X1-X2));
le(MARGIN,abs(Y1-Y2))),

(not_marginal_distance(X1,Y1,X2,Y2);

60

not_margin(MARGIN);
(ls(abs(X1-X2),MARGIN), ls(abs(Y1-Y2),MARGIN))),

push_obj_dist(20), % default push object distance of 20.
(not_push_obj_dist(C2) :- C2=\=20),

nquads(8), (not_nquads(C1) :- C1=\=8),

(le(X0, Y0); ls(Y0, 0); quadrant(X0, Y0, 0)),
(ls(Y1, X1); le(X1, 0); quadrant(X1, Y1, 1)),
(le(Y2, 0); ls(0, X2); le(Y2, abs(X2)); quadrant(X2, Y2, 2)),
(le(Y3, 0); le(0, X3); ls(abs(X3), Y3); quadrant(X3, Y3, 3)),
(le(X4, 0); le(0, Y4); ls(X4, abs(Y4)); quadrant(X4, Y4, -1)),
(ls(X5, 0); le(0, Y5); le(abs(Y5), X5); quadrant(X5, Y5, -2)),
(le(0, X6); ls(X6, Y6); quadrant(X6, Y6, -3)),
(ls(0, Y7); le(Y7, X7); quadrant(X7, Y7, -4)),

%%% Axioms %%%

% The following axioms create a virtual object to be placed
% PUSH_OBJ_DIST from the robot in the middle of the quadrant opposite
% the desired direction. Note that the direction function is wrt the
% robot’s coordinate system.

(not_curr_loc_internal(Xhere, Yhere);
not_destination(Xthere, Ythere);
not_quadrant(Xhere-Xthere, Yhere-Ythere, Quad0);
has_push_object(Quad0)),

(not_push_object(PUSH_OBJECT);
not_push_obj_dist(PUSH_OBJ_DIST);
not_has_push_object(Quad1);
not_quad_angle(Quad1,WorldAng);
not_angle_world_vs_robot(WorldAng, LocalAng);
(distance(PUSH_OBJECT, PUSH_OBJ_DIST), direction(PUSH_OBJECT, LocalAng))),

(quad_angle(Quad,LocalAng):-
pi(PI), nquads(NQUADS), LocalAng is (Quad+0.5)*2*PI/NQUADS),

(angle_world_vs_robot(WorldAng, LocalAng) :-
curr_dir_internal(RobAng), pi(PI),
between_minus_and_plus(PI, WorldAng-RobAng, LocalAng)),

(between_minus_and_plus(PI,Ang1,Ang1) :- Ang1 =< PI, Ang1 >= -PI),
(between_minus_and_plus(PI,Ang1,Ang1+(2*PI)) :- Ang1 < -PI),
(between_minus_and_plus(PI,Ang1,Ang1-(2*PI)) :- Ang1 > PI)

)).
%%%%%%%%%%%%%%%%%% END OF LOGICAL THEORY %%%%%%%%%%%%%%%%%%%%%%%

% Assemble control theory (L1) and sensor theory (M2) together:
is_theory((Th0,ThS)) :- is_theory1(Th0), is_sensor_theory(ThS).

% Load theory into PTTP.
lay1load :- is_theory(Th), pttp(Th).

% The following is the goal that is called by Layer 1’s executable at
% every cycle (‘goal_layer1(X)’). (Right now subsumption in this layer
% is done by negation as failure that’s why the "20" steps limit is
% there).
goal_layer1([external_object(PUSH_OBJECT),

external_distance(PUSH_OBJECT, Dist_po),
external_direction(PUSH_OBJECT, Dir_calc)]) :-
time_stamp_layer,

61

prove((object(PUSH_OBJECT), push_object(PUSH_OBJECT)), 20),
print_time_stamp,
prove((distance(PUSH_OBJECT, Dist_po), direction(PUSH_OBJECT, Dir_po)), 50),
Dir_calc is Dir_po,
print_time_stamp,
write(’push object distance = ’), write(Dist_po), nl,
write(’push object direction = ’), write(Dir_calc).

goal_layer1(failed_proof_layer1):-print(’failed proof. ’), print_time_stamp.

% Negation-as-failure will produce "not_external_object(PUSH_OBJECT)"
% in the receiving layer, but we should not produce it ourselves. We
% only tell the receiving layer that we failed.

The following is a sample proof:

PTTP input formulas:
1 pi(3.14159).
2 not_pi(_G680):-_G680=\=3.14159.
3 margin(50).
4 not_margin(_G700):-_G700=\=50.
5 push_object(z).
6 not_push_object(_G716);not_curr_loc_internal(_G721, _G722);

not_destination(_G727, _G728);marginal_distance(_G721, _G722, _G727,
_G728);object(_G716).

7 marginal_distance(_G746, _G747, _G748, _G749);not_margin(_G754);le(_G754,
abs(_G746-_G748));le(_G754, abs(_G747-_G749)).

8 not_marginal_distance(_G746, _G747, _G748, _G749);not_margin(_G754);
ls(abs(_G746-_G748), _G754), ls(abs(_G747-_G749), _G754).

9 push_obj_dist(20).
10 not_push_obj_dist(_G821):-_G821=\=20.
11 nquads(8).
12 not_nquads(_G837):-_G837=\=8.
13 le(_G848, _G849);ls(_G849, 0);quadrant(_G848, _G849, 0).
14 ls(_G747, _G746);le(_G746, 0);quadrant(_G746, _G747, 1).
15 le(_G749, 0);ls(0, _G748);le(_G749, abs(_G748));quadrant(_G748, _G749, 2).
16 le(_G913, 0);le(0, _G920);ls(abs(_G920), _G913);quadrant(_G920, _G913, 3).
17 le(_G940, 0);le(0, _G947);ls(_G940, abs(_G947));quadrant(_G940, _G947, -1).
18 ls(_G967, 0);le(0, _G974);le(abs(_G974), _G967);quadrant(_G967, _G974, -2).
19 le(0, _G995);ls(_G995, _G1001);quadrant(_G995, _G1001, -3).
20 ls(0, _G1014);le(_G1014, _G1020);quadrant(_G1020, _G1014, -4).
21 not_curr_loc_internal(_G721, _G722);not_destination(_G727, _G728);

not_quadrant(_G721-_G727, _G722-_G728, _G1046);has_push_object(_G1046).
22 not_push_object(_G716);not_push_obj_dist(_G1067);

not_has_push_object(_G1072);not_quad_angle(_G1072, _G1078);
not_angle_world_vs_robot(_G1078, _G1084);distance(_G716, _G1067),
direction(_G716, _G1084).

23 quad_angle(_G1101, _G1084):-pi(_G1107), nquads(_G1112), _G1084 is
(_G1101+0.5)*2*_G1107/_G1112.

24 angle_world_vs_robot(_G1078, _G1084):-curr_dir_internal(_G1145), pi(_G1107),
between_minus_and_plus(_G1107, _G1078-_G1145, _G1084).

25 between_minus_and_plus(_G1107, _G1166, _G1166):-_G1166=<_G1107,
_G1166>= -_G1107.

26 between_minus_and_plus(_G1107, _G1166, _G1166+2*_G1107):-_G1166< -_G1107.
27 between_minus_and_plus(_G1107, _G1166, _G1166-2*_G1107):-_G1166>_G1107.
28 pi(3.14159).
29 not_pi(_G1232):-_G1232=\=3.14159.
30 sonar_reading_internal(_G1247, _G1248):-sonar_reading(_G1247, _G1248).
31 curr_loc_internal(_G1259, _G1260):-curr_loc(_G1265, _G1266),

offset_internal(_G1271, _G1272, _G1273), _G1259 is _G1265-_G1271,
_G1260 is _G1266-_G1272.

32 curr_dir_internal(_G1296):-curr_dir(_G1301), offset_internal(_G1271, _G1272,
_G1273), angle_deg_rad(_G1301-_G1273, _G1296).

33 angle_deg_rad(_G1322, _G1323):-var(_G1323), pi(_G1333), _G1323 is
((integer(_G1322)+1800)mod 3600-1800)/3600* (2*_G1333).

34 angle_deg_rad(_G1322, _G1323):-var(_G1322), pi(_G1333), _G1322 is

62

integer(_G1323/ (2*_G1333)*3600).
35 offset_internal(_G1397, _G1398, _G1399):-offset(_G1397, _G1398, _G1399).
36 destination(_G1411, _G1412):-external_destination(_G1411, _G1412).
37 object(_G1423):-external_object(_G1423).
38 distance(_G1423, _G1434):-external_distance(_G1423, _G1434).
39 direction(_G1423, _G1446):-external_direction(_G1423, _G1446).
40 go_fwd(_G1457):-external_fwd(_G1457).
41 go_turn(_G1464):-external_turn(_G1464).

PTTP to Prolog translation time: 0.25 seconds, including printing

Prolog compilation time: 0.1 seconds, including printing
Start cycle 1
...
Start cycle 1044

137 inferences so far. ’failed proof. ’
PTTP input formulas:
42 sonar_reading(0, 140).
...
57 sonar_reading(15, 77).
58 curr_loc(38, -103).
59 curr_dir(2962).
60 offset(0, 0, 0).
61 destination(805, -300).
62 goal_location(corridor2_cross).

PTTP to Prolog translation into latch time: 0.01 seconds, including printing

Assserting into Prolog time: 0.02 seconds, including printing
Start cycle 1045

Proof time: 31 inferences in 0 seconds, including printing
Proof:
Goal# Wff# Wff Instance
----- ---- ------------

[0] 0 query :- [1] , [10].
[1] 6 object(z) :- [2] , [3] , [7] , [8].
[2] 5 push_object(z).
[3] 31 curr_loc_internal(38, -103) :- [4] , [5].
[4] 58 curr_loc(38, -103).
[5] 35 offset_internal(0, 0, 0) :- [6].
[6] 60 offset(0, 0, 0).
[7] 61 destination(805, -300).
[8] 8 not_marginal_distance(38, -103, 805, -300) :- [9].
[9] 3 margin(50).

[10] 5 push_object(z).

Proof time: 9170 inferences in 0.46 seconds, including printing
Proof:

Goal# Wff# Wff Instance
----- ---- ------------

[0] 0 query :- [1] , [23].
[1] 22 distance(z, 20) :- [2] , [3] , [4] , [11] , [14].
[2] 5 push_object(z).
[3] 9 push_obj_dist(20).
[4] 21 has_push_object(3) :- [5] , [9] , [10].
[5] 31 curr_loc_internal(38, -103) :- [6] , [7].
[6] 58 curr_loc(38, -103).
[7] 35 offset_internal(0, 0, 0) :- [8].
[8] 60 offset(0, 0, 0).
[9] 61 destination(805, -300).

[10] 16 quadrant(38-805, -103- -300, 3).
[11] 23 quad_angle(3, 2.74889) :- [12] , [13].
[12] 1 pi(3.14159).
[13] 11 nquads(8).
[14] 24 angle_world_vs_robot(2.74889, 2.74889- -1.11352-2*3.14159) :-

63

[15] , [21] , [22].
[15] 32 curr_dir_internal(-1.11352) :- [16] , [17] , [19].
[16] 59 curr_dir(2962).
[17] 35 offset_internal(0, 0, 0) :- [18].
[18] 60 offset(0, 0, 0).
[19] 33 angle_deg_rad(2962-0, -1.11352) :- [20].
[20] 1 pi(3.14159).
[21] 1 pi(3.14159).
[22] 27 between_minus_and_plus(3.14159, 2.74889- -1.11352,

2.74889- -1.11352-2*3.14159).
[23] 22 direction(z, 2.74889- -1.11352-2*3.14159) :-

[24] , [25] , [26] , [33] , [36].
[24] 5 push_object(z).
[25] 9 push_obj_dist(20).
[26] 21 has_push_object(3) :- [27] , [31] , [32].
[27] 31 curr_loc_internal(38, -103) :- [28] , [29].
[28] 58 curr_loc(38, -103).
[29] 35 offset_internal(0, 0, 0) :- [30].
[30] 60 offset(0, 0, 0).
[31] 61 destination(805, -300).
[32] 16 quadrant(38-805, -103- -300, 3).
[33] 23 quad_angle(3, 2.74889) :- [34] , [35].
[34] 1 pi(3.14159).
[35] 11 nquads(8).
[36] 24 angle_world_vs_robot(2.74889, 2.74889- -1.11352-2*3.14159) :-

[37] , [43] , [44].
[37] 32 curr_dir_internal(-1.11352) :- [38] , [39] , [41].
[38] 59 curr_dir(2962).
[39] 35 offset_internal(0, 0, 0) :- [40].
[40] 60 offset(0, 0, 0).
[41] 33 angle_deg_rad(2962-0, -1.11352) :- [42].
[42] 1 pi(3.14159).
[43] 1 pi(3.14159).
[44] 27 between_minus_and_plus(3.14159, 2.74889- -1.11352,

2.74889- -1.11352-2*3.14159).
push object distance = 20
push object direction = -2.42077

B.6 Layers -1 and 0 Control Theory

The following contains the theory for Layer 0 which implements obstacle avoid-
ance. It takes as input the sensor data provided by the low-level sensor module (M1
in Section B.4) and any virtual pushing objects provided by Layer 1 and computes
the angle and forward speed needed to maximally avoid these objects.

The theory is also used for Layer -1 which determines whether the robot should
halt since halt detection depends on a subset of the obstacle avoidance axioms. It
takes the turn and fwd inputs from Layer 0 and uses these to determine whether
the robot should turn, go forward, or halt. Because its default behavior is to halt, it
keeps the robot protected from (non-moving) obstacles while Layer 0 deliberates.
The extraneous Layer 0 axioms do not significantly affect Layer -1’s performance
in practice.

Unless otherwise specified, distances are in 1/10-in and angles are in radians.

The theory includes the following predicate symbols:

64

• PTTP-internal predicates (le, =\=, etc.)
• pi is as described in the the low-level sensor theory (M1).
• sonar reading internal is input from M1 and is as described there.
• object(〈Object〉) – true if Object is an object. external object(z) is input from

Layer 1 into Layer 0 and translated by M1 into object(z), the virtual pushing
object.

• distance(〈Object〉, 〈Distance〉) – the distance of Object from the robot. We as-
sume each object is a point and sonars sense distinct objects, so that distance

should be a function ideally. Layer 1 inputs
external distance(z, 〈PUSHING OBJ DIST 〉) into Layer 0 and M1 translates
it into distance(z, 〈PUSHING OBJ DIST 〉), the distance of the virtual push-
ing object.

• direction(〈Object〉, 〈Direction〉) – the direction of Object with respect to the
robot. Our assumption that each object is a point implies direction should also
be a function ideally (assuming we limit its range to [0, 2π]). Layer 1 inputs
external direction(z, 〈Pushing Object Dir〉) into Layer 0 and M1 translates
it into direction(z, 〈Pushing Object Dir〉), the direction of the virtual pushing
object.

• ab avoid – abnormal predicate which higher layers can set to true to override ob-
stacle avoidance behavior. For example, this makes it possible to make the robot
push an object it would otherwise avoid. We currently do not use this predicate,
so it is fixed to false.

• nsonars(16) – number of sonar sensors; ideally, should be a constant.
• min dist(30) – minimum distance that an object is allowed to be in front of the

robot before it halts; ideally, should be a constant.
• min angle(0.3) – minimum turning angle; ideally, should be a constant.
• min speed(10) – minimum forward speed; ideally, should be a constant.
• sonar(〈Sonar〉) – true if argument is an integer corresponding to a sonar.
• sonar direction(〈Sonar〉, 〈Dir〉) – direction of corresponding sonar with re-

spect to robot; ideally, should be a function with range [0, 2π].
• correct dist(〈Sonar〉, 〈Orig dist〉, 〈Coarse dist〉) – a coarse filter for the dis-

tance Orig dist returned by the sonar corresponding to Sonar; Coarse dist is
a weighted average of the distances returned by the sensor and its two immedi-
ate neighbors. This is based on the assumption that objects observed by nearby
sensors tend to be nearby. Ideally, correct distance should be a function.

• adjacent right sonar(〈SonarL〉, 〈SonarR〉) – true if the corresponding sonars
are adjacent.

• fast halt robot – made true if an unprocessed sonar reading indicates that there
may be an object too close in front of the robot.

• object ahead – true if an object has been detected too close in front of the robot.
• halt robot – command for robot to halt; made true iff object ahead.
• get force([〈ForceMag〉, 〈ForceDir〉]) – the magnitude and direction of the

“force” exerted by the surrounding objects on the robot. Ideally, should be a
constant.

• get move speed(〈ForceMag〉, 〈MoveSpeed〉) – converts the force magnitude

65

argument into a movement speed for the robot. Ideally, should be a function.
• get move dir(〈ForceDir〉, 〈MoveDir〉) – converts the force direction into a

movement direction for the robot. Ideally, should be a function (restricted to the
range [−π, π]).

• heading angle(〈Angle〉) – the robot’s direction of forward movement; ideally,
should be a constant.

• heading speed(〈Speed〉) – the robot’s speed of forward movement; ideally, should
be a constant.

• angle deg rad(〈DegAng〉, 〈RadAng〉) – relates angles in degrees and radians.
• need turn(〈Angle〉) – true if Angle is above the turning angle threshold.
• turn(〈Angle〉) – indicates the angle (in degrees) the robot should turn; non-zero

if heading angle is above threshold. Ideally, should be a constant.
• go turn(〈Angle〉) – angle input into Layer -1 from Layer 0, translated from

external turn by M1; ideally, should be a constant.
• need fwd(〈Speed〉) – true if Speed is above the speed threshold.
• fwd(〈Speed〉) – indicates the speed at which the robot should move forward;

non-zero if robot does not need to turn and heading speed is above the speed
threshold. Ideally, should be a constant.

• go fwd(〈Speed〉) – speed input into Layer -1 from Layer 0, translated from
external fwd by M1; ideally, should be a constant.

Function symbols used include PTTP-internal functions (−, abs, etc.). Constant
symbols used include numerical constants.

The theory follows:

is_theory0((
% This can be used to control communication with higher layers.

not_ab_avoid,
% ab_avoid, % !!!! For the experiment 1a(scenario 2) only.

%%%% Layer -1 INPUT %%%
%
% functions: sonar_reeding_internal, go_turn, go_fwd

%%%% Layer 0 INPUT %%%
%
% predicates: object
% functions: sonar_reading_internal, distance, direction

% Note that, for practicality, the functions above and all other
% functions and constants described in this layer are represented as
% predicates, except where noted otherwise.

%%% PARAMETERS %%%

pi(3.14159), (not_pi(C0) :- C0=\=3.14159),

nsonars(16), (not_nsonars(C1) :- C1=\=16),
min_dist(30), (not_min_dist(C2) :- C2=\=30), % halting distance.
min_angle(0.3), (not_min_angle(C3) :- C3=\=0.3),
min_speed(10), (not_min_speed(C4) :- C4=\=10),

66

% 0 <= Sonar_number < NSONARS
(not_nsonars(NSONARS) ;
(not_sonar_reading_internal(Sonar_number0, Dist0) ; le(0,Sonar_number0)),
(not_sonar_reading_internal(Sonar_number0, Dist0) ;
ls(Sonar_number0, NSONARS))),

(not_pi(PI) ; not_nsonars(NSONARS) ; sonar_direction(N, N*(2*PI/NSONARS))),

%%% Axioms %%%

%% Module: Sonar %%
%%---------------%%

(not_pi(PI) ; not_sonar_reading_internal(Sonar_number1, Dist2) ;
not_sonar_direction(Sonar_number1, Dir2) ;
ls(Dist2,0) ; ls(Dir2,0) ; ls(PI*2,Dir2) ;
not_correct_dist(Sonar_number1, Dist2, Dist2_new) ;
(object(obj_sk1(Dist2_new, Dir2)),
distance(obj_sk1(Dist2_new, Dir2), Dist2_new) ,
direction(obj_sk1(Dist2_new, Dir2), Dir2))),

% "correct_dist" is a coarse filter for sonar values using neighboring sonars.

(correct_dist(Sonar_n1, D2, (DistL+DistR+4*D2)//6) ;
not_adjacent_right_sonar(Sonar_n1, RightS) ;
not_adjacent_right_sonar(LeftS, Sonar_n1) ;
not_sonar_reading_internal(LeftS, DistL) ;
not_sonar_reading_internal(RightS, DistR) ;
(ls((DistL+DistR),D2))),

(correct_dist(Sonar_n1, D2, (DistL+DistR+2*D2)//4) ;
not_adjacent_right_sonar(Sonar_n1, RightS) ;
not_adjacent_right_sonar(LeftS, Sonar_n1) ;
not_sonar_reading_internal(LeftS, DistL) ;
not_sonar_reading_internal(RightS, DistR) ;
le(D2,(DistL+DistR))),

(adjacent_right_sonar(N, N1):- nonvar(N), ls(0,N), (N1 is N-1)),
(adjacent_right_sonar(N2, N3):- nonvar(N3), ls(N3,15), (N2 is N3+1)),
(adjacent_right_sonar(0, N4):- nsonars(NSONARS1), (N4 is NSONARS1 - 1)),

%% Module: Collide %%
%%-----------------%%

% For proving fast_halt_robot

sonar(0), sonar(1), sonar(2), sonar(3), sonar(4), sonar(5),
sonar(6), sonar(7), sonar(8), sonar(9), sonar(10), sonar(11),
sonar(12), sonar(13), sonar(14), sonar(15),

(fast_halt_robot :-
pi(PI), sonar(Sonar_number1),
sonar_direction(Sonar_number1, Dir5),
(ls(Dir5,PI/3); ls((2*PI)-PI/3,Dir5)),
sonar_reading_internal(Sonar_number1, Dist5),
min_dist(MIN_DIST), le(Dist5,MIN_DIST)),

% For proving halt_robot:

(not_object_ahead; halt_robot),
(object_ahead; not_halt_robot),

(not_pi(PI); not_min_dist(MIN_DIST);
not_object(Obj5); not_distance(Obj5, Dist3); le(MIN_DIST,Dist3);

67

not_direction(Obj5, Dir4);
(le(PI/3, Dir4), le(Dir4, (2*PI)-PI/3));
object_ahead),

(not_pi(PI); not_min_dist(MIN_DIST);
not_object_ahead;
(object(obj_sk2), distance(obj_sk2, dist_sk1), ls(dist_sk1,
MIN_DIST), direction(obj_sk2, dir_sk1), ((ls(2*PI - PI/3,
dir_sk1)); (ls(dir_sk1,PI/3))))),

%% Module: Feelforce %%
%%-------------------%%

% This module is implemented by a semantic attachment (a c program).

%% Module: Runaway %%
%%-----------------%%

% get_force returns a [magnitude, direction] pair. Magnitude is a
% positive number proportional to the gravitational force of the
% objects on the robot. Direction is the orientation of the force, in
% the range [-PI,PI].

(ab_avoid; not_get_force([ForceMag0,ForceDir0]);
not_get_move_speed(ForceMag0,MoveSpeed0);
not_get_move_dir(ForceDir0, MoveDir0);
(heading_angle(MoveDir0), heading_speed(MoveSpeed0))),

% We set the robot to move away from the objects with a speed
% proportional to the objects’ gravitational force. To do so, we
% transform the force direction from the range [-PI,PI] to
% [0,2PI] by adding 2PI, then "modding" by 2PI. We then subtract PI to
% make the robot move in the opposite direction.
%
% (Note: We must add 2PI before "modding" because prolog’s "mod"
% returns a negative integer for a negative dividend. Also, we do the
% computation in 1/10-radians because "mod" requires integer
% arguments. Finally, we use precomputed multiples of PI for
% simplicity.)

(get_move_speed(ForceMag1, MoveSpeed1) :- (MoveSpeed1 is ForceMag1)),

(get_move_dir(ForceDir1, MoveDir1) :-
(MoveDir1 is ((((integer(ForceDir1*100) + 628) mod 628)/100) - 3.14))),

% NOTE: If there are no objects, the robot may spin indefinitely.

%% Module: Turn %%
%%--------------%%

(not_heading_angle(Angle1); not_need_turn(Angle1);
not_heading_speed(Speed3); not_need_fwd(Speed3);
not_angle_deg_rad(DegAngle,Angle1);
turn(DegAngle)),

(not_min_angle(MIN_ANGLE);
not_need_turn(Angle2);
(heading_angle(Angle2), ls(MIN_ANGLE, abs(Angle2)))),

% The following computes the need_turn angle.
% Note: Although the "le" predicate is an antecedent in the following axiom, we
% have placed it at the end of the clause. This is to accommodate a
% system-specific restriction requiring all of the variables needed by an "le"
% predicate (and similar built-in predicates) to be instantiated before the

68

% prover attempts to evaluate it. By placing the predicate at the end of the
% clause, we force the theorem prover to notice it only after seeing all the
% other literals. No generality is lost.

(not_min_angle(MIN_ANGLE);
not_heading_angle(Angle3);
need_turn(Angle3);
le(abs(Angle3), MIN_ANGLE)),

%% Module: Forward %%
%%-----------------%%

% Note: If there is only one object in the domain at a distance 1
% directly behind the robot, the robot will head off at a speed of
% 100.

(not_heading_speed(Speed1); not_heading_angle(Angle4);
need_turn(Angle4); not_need_fwd(Speed1);
fwd(Speed1)),

(not_min_speed(MIN_SPEED);
not_need_fwd(Speed2);
ls(MIN_SPEED, Speed2)),

% second direction:
% Note: As in the similar need_turn axiom above, we put the "le" predicate at
% the end of the clause to accommodate system-specific restrictions.

(not_min_speed(MIN_SPEED);
need_fwd(Speed2);
le(Speed2, MIN_SPEED))

)).

% Assemble control theory (L1) and sensor theory (M2) together:
is_theory((Th0,ThS)) :- is_theory0(Th0), is_sensor_theory(ThS).

% Load theory into PTTP.
lay0load :- is_theory(Th), pttp(Th).

% Layer 0: Subsumption in this layer is done via the domain-closure
% (via negation as failure) of ’object’.

prove_angle(A):-print(’starting to prove "turn"’),time_stamp_layer,
prove((turn(A)),15),
print(’finished proving "turn".’), print_time_stamp.
prove_angle(0):-print(’failed proving "turn"’),print_time_stamp.

prove_speed(S):-print(’starting to prove "fwd"’),time_stamp_layer,
prove((fwd(S)),10).

prove_speed(0):-print(’failed proving "fwd"’),print_time_stamp.

goal_layer0([external_fwd(S), external_turn(A)]) :-
prove_angle(A),prove_speed(S),
print(’turn angle = ’), print(A), nl, print(’fwd speed = ’), print(S).

% Layer -1: Subsumption in this layer is done via negation as failure
% of ’fast_halt_robot’ and ’halt_robot’.

prove_turn(A):- print(’start prove go_turn(A)’),time_stamp_layer,
prove(go_turn(A),20).

69

prove_turn(0):-print(’failed proof. ’), print_time_stamp.

prove_fwd(0):- print(’start prove fast_halt_robot’),time_stamp_layer,
prove(fast_halt_robot,10,2,2), print_time_stamp,
print(’start prove halt_robot’),
time_stamp_layer, prove(halt_robot,50,10,40),
print(’succeeded halt_robot ’), print_time_stamp.

prove_fwd(S):- print(’proof failed’),print_time_stamp,
print(’start prove go_fwd(S)’),time_stamp_layer,
prove((go_fwd(S)),5), print_time_stamp.

prove_fwd(0):-print(’failed proof. ’), print_time_stamp.

goal_layer_1([S, A]) :- prove_turn(A), prove_fwd(S),
print(’turn angle = ’), print(A), nl, print(’fwd speed = ’), print(S).

goal_layer_1([0,0]).

Layer 0 sample proof

PTTP input formulas:
1 not_ab_avoid.
2 pi(3.14159).
3 not_pi(_G675):-_G675=\=3.14159.
4 nsonars(16).
5 not_nsonars(_G695):-_G695=\=16.
6 min_dist(30).
7 not_min_dist(_G711):-_G711=\=30.
8 min_angle(0.3).
9 not_min_angle(_G731):-_G731=\=0.3.

10 min_speed(10).
11 not_min_speed(_G751):-_G751=\=10.
12 not_nsonars(_G762); (not_sonar_reading_internal(_G770, _G771);le(0, _G770)),

(not_sonar_reading_internal(_G770, _G771);ls(_G770, _G762)).
13 not_pi(_G791);not_nsonars(_G762);sonar_direction(_G798,

_G798* (2*_G791/_G762)).
14 not_pi(_G791);not_sonar_reading_internal(_G821, _G822);

not_sonar_direction(_G821, _G828);ls(_G822, 0);ls(_G828, 0);ls(_G791*2,
_G828);not_correct_dist(_G821, _G822, _G856);object(obj_sk1(_G856,
_G828)), distance(obj_sk1(_G856, _G828), _G856), direction(obj_sk1(_G856,
_G828), _G828).

15 correct_dist(_G887, _G888, (_G897+_G898+4*_G888)//6);
not_adjacent_right_sonar(_G887, _G907);not_adjacent_right_sonar(_G912,
_G887);not_sonar_reading_internal(_G912, _G897);
not_sonar_reading_internal(_G907, _G898);ls(_G897+_G898, _G888).

16 correct_dist(_G887, _G888, (_G897+_G898+2*_G888)//4);
not_adjacent_right_sonar(_G887, _G907);not_adjacent_right_sonar(_G912,
_G887);not_sonar_reading_internal(_G912, _G897);
not_sonar_reading_internal(_G907, _G898);le(_G888, _G897+_G898).

17 adjacent_right_sonar(_G798, _G992):-nonvar(_G798), ls(0, _G798), _G992 is
_G798-1.

18 adjacent_right_sonar(_G1017, _G1018):-nonvar(_G1018), ls(_G1018, 15),
_G1017 is _G1018+1.

19 adjacent_right_sonar(0, _G1044):-nsonars(_G1049), _G1044 is _G1049-1.
20 sonar(0).
...
35 sonar(15).
36 fast_halt_robot:-pi(_G791), sonar(_G821), sonar_direction(_G821, _G1157),

(ls(_G1157, _G791/3);ls(2*_G791-_G791/3, _G1157)),
sonar_reading_internal(_G821, _G1187), min_dist(_G1192),
le(_G1187, _G1192).

37 not_object_ahead;halt_robot.
38 object_ahead;not_halt_robot.
39 not_pi(_G791);not_min_dist(_G1192);not_object(_G1225);not_distance(_G1225,

_G1231);le(_G1192, _G1231);not_direction(_G1225, _G1243);le(_G791/3,
_G1243), le(_G1243, 2*_G791-_G791/3);object_ahead.

70

40 not_pi(_G791);not_min_dist(_G1192);not_object_ahead;object(obj_sk2,
distance(obj_sk2, dist_sk1), ls(dist_sk1, _G1192),
direction(obj_sk2, dir_sk1), (ls(2*_G791-_G791/3, dir_sk1);
ls(dir_sk1, _G791/3)).

41 ab_avoid;not_get_force([_G1349, _G1352]);not_get_move_speed(_G1349, _G1359);
not_get_move_dir(_G1352, _G1365);heading_angle(_G1365), heading_speed(_G1359).

42 get_move_speed(_G1380, _G1381):-_G1381 is _G1380.
43 get_move_dir(_G1392, _G1393):-_G1393 is

(integer(_G1392*100)+628)mod 628/100-3.14.
44 not_heading_angle(_G1425);not_need_turn(_G1425);not_heading_speed(_G1435);

not_need_fwd(_G1435);not_angle_deg_rad(_G1445, _G1425);turn(_G1445).
45 not_min_angle(_G1456);not_need_turn(_G1461);heading_angle(_G1461),

ls(_G1456, abs(_G1461)).
46 not_min_angle(_G1456);not_heading_angle(_G1484);need_turn(_G1484);

le(abs(_G1484), _G1456).
47 not_heading_speed(_G1502);not_heading_angle(_G1507);need_turn(_G1507);

not_need_fwd(_G1502);fwd(_G1502).
48 not_min_speed(_G1527);not_need_fwd(_G1532);ls(_G1527, _G1532).
49 not_min_speed(_G1527);need_fwd(_G1532);le(_G1532, _G1527).
50 pi(3.14159).
51 not_pi(_G1565):-_G1565=\=3.14159.
52 sonar_reading_internal(_G1580, _G1581):-sonar_reading(_G1580, _G1581).
...
59 object(_G1756):-external_object(_G1756).
60 distance(_G1756, _G1767):-external_distance(_G1756, _G1767).
61 direction(_G1756, _G1779):-external_direction(_G1756, _G1779).
62 go_fwd(_G1790):-external_fwd(_G1790).
63 go_turn(_G1797):-external_turn(_G1797).

PTTP to Prolog translation time: 0.73 seconds, including printing

Prolog compilation time: 0.2 seconds, including printing

PTTP input formulas:
64 sonar_reading(0, 65).
...
79 sonar_reading(15, 58).
80 curr_loc(810, -337).
81 curr_dir(3246).
82 offset(0, 0, 0).
83 external_object(z).
84 external_distance(z, 20).
85 external_direction(z, -3.08225).
86 goal_location(corridor2_cross).

PTTP to Prolog translation into latch time: 0.02 seconds, including printing

Assserting into Prolog time: 0.03 seconds, including printing
Start cycle 551
’starting to prove "turn"’
Proof time: 9 inferences in 0 seconds, including printing
Proof:
Goal# Wff# Wff Instance
----- ---- ------------

[0] 0 query :- [1] , [3] , [5].
[1] 59 object(z) :- [2].
[2] 83 external_object(z).
[3] 60 distance(z, 20) :- [4].
[4] 84 external_distance(z, 20).
[5] 61 direction(z, -3.08225) :- [6].
[6] 85 external_direction(z, -3.08225).

9 inferences so far.
Proof time: 1509 inferences in 0.08 seconds, including printing
Proof:
Goal# Wff# Wff Instance
----- ---- ------------

[0] 0 query :- [1].
[1] 14 object(obj_sk1((91+65+4*140)//6, 1* (2*3.14159/16))) :-

71

[2] , [3] , [5] , [8].
[2] 2 pi(3.14159).
[3] 52 sonar_reading_internal(1, 140) :- [4].
[4] 65 sonar_reading(1, 140).
[5] 13 sonar_direction(1, 1* (2*3.14159/16)) :- [6] , [7].
[6] 2 pi(3.14159).
[7] 4 nsonars(16).
[8] 15 correct_dist(1, 140, (91+65+4*140)//6) :-

[9] , [10] , [11] , [13].
[9] 17 adjacent_right_sonar(1, 0).

[10] 18 adjacent_right_sonar(2, 1).
[11] 52 sonar_reading_internal(2, 91) :- [12].
[12] 66 sonar_reading(2, 91).
[13] 52 sonar_reading_internal(0, 65) :- [14].
[14] 64 sonar_reading(0, 65).

Proof time: 1529 inferences in 0.09 seconds, including printing

... [proof for sonar 1 duplicated]

... [proofs (and duplicates) for sonars 0, 2-15]

... [proofs (and duplicates) for sonars 0-15 duplicated]

4864 inferences so far.
8021 inferences so far. ’failed proving "turn"’
’starting to prove "fwd"’
Proof time: 57 inferences in 0 seconds, including printing
Proof:
Goal# Wff# Wff Instance
----- ---- ------------

[0] 0 query :- [1].
[1] 47 fwd(26) :- [2] , [6] , [10] , [12].
[2] 41 heading_speed(26) :- [3] , [4] , [5].
[3] 1 not_ab_avoid.
[4] 42 get_move_speed(26, 26).
[5] 43 get_move_dir(2.90998, -0.23).
[6] 41 heading_angle(-0.23) :- [7] , [8] , [9].
[7] 1 not_ab_avoid.
[8] 42 get_move_speed(26, 26).
[9] 43 get_move_dir(2.90998, -0.23).

[10] 45 not_need_turn(-0.23) :- [11].
[11] 8 min_angle(0.3).
[12] 49 need_fwd(26) :- [13].
[13] 10 min_speed(10).
’turn angle = ’0
’fwd speed = ’26

Layer -1 sample proof

PTTP input formulas:
1 not_ab_avoid.

... [identical to Layer 0 above]
63 go_turn(_G1797):-external_turn(_G1797).

PTTP to Prolog translation time: 0.73 seconds, including printing

Prolog compilation time: 0.2 seconds, including printing

Start cycle 1
’start prove go_turn(A)’
21 inferences so far. ’failed proof. ’
’start prove fast_halt_robot’
465 inferences so far. ’proof failed’
’start prove go_fwd(S)’

72

6 inferences so far. ’failed proof. ’
’turn angle = ’0
’fwd speed = ’0

Start cycle 2
...
PTTP input formulas:
64 external_fwd(0).
65 external_turn(0).

PTTP to Prolog translation into latch time: 0 seconds, including printing

Assserting into Prolog time: 0 seconds, including printing
Start cycle 54
’start prove go_turn(A)’
Proof time: 2 inferences in 0 seconds, including printing
Proof:
Goal# Wff# Wff Instance
----- ---- ------------

[0] 0 query :- [1].
[1] 63 go_turn(0) :- [2].
[2] 65 external_turn(0).

’start prove fast_halt_robot’
465 inferences so far. ’proof failed’
’start prove go_fwd(S)’
Proof time: 2 inferences in 0 seconds, including printing
Proof:
Goal# Wff# Wff Instance
----- ---- ------------

[0] 0 query :- [1].
[1] 62 go_fwd(0) :- [2].
[2] 64 external_fwd(0).

’turn angle = ’0
’fwd speed = ’0

PTTP input formulas:
64 external_fwd(0).
65 external_turn(0).

PTTP to Prolog translation into latch time: 0 seconds, including printing

Assserting into Prolog time: 0 seconds, including printing
Start cycle 55

...

PTTP input formulas:
64 sonar_reading(0, 69).
...
79 sonar_reading(15, 90).
80 curr_loc(679, -305).
81 curr_dir(3112).
82 offset(0, 0, 0).
83 external_fwd(24).
84 external_turn(0).
85 goal_location(corridor2_cross).

PTTP to Prolog translation into latch time: 0.02 seconds, including printing

Assserting into Prolog time: 0.03 seconds, including printing
Start cycle 720
’start prove go_turn(A)’
Proof time: 2 inferences in 0 seconds, including printing
Proof:
Goal# Wff# Wff Instance
----- ---- ------------

[0] 0 query :- [1].
[1] 63 go_turn(0) :- [2].

73

[2] 84 external_turn(0).
’start prove fast_halt_robot’
545 inferences so far. ’proof failed’
’start prove go_fwd(S)’
Proof time: 2 inferences in 0 seconds, including printing
Proof:
Goal# Wff# Wff Instance
----- ---- ------------

[0] 0 query :- [1].
[1] 62 go_fwd(24) :- [2].
[2] 83 external_fwd(24).

’turn angle = ’0
’fwd speed = ’24

References

Amir, E. (2001). Efficient approximation for triangulation of minimum treewidth.
In Proc. Seventeenth Conference on Uncertainty in Artificial Intelligence (UAI
’01), pages 7–15. Morgan Kaufmann.

Amir, E. (2002). Interpolation theorems for nonmonotonic reasoning systems. In
8th European conference on logics in artificial intelligence (JELIA’02), pages
233–244. Springer.

Amir, E. and Engelhardt, B. (2003). Factored planning. In Proc. Eighteenth In-
ternational Joint Conference on Artificial Intelligence (IJCAI ’03). Morgan
Kaufmann.

Amir, E. and Maynard-Reid II, P. (1998). Logic-based subsumption architecture.
In AAAI 1998 Fall Symposium on Cognitive Robotics.

Amir, E. and Maynard-Reid II, P. (1999). Logic-based subsumption architecture.
In Proc. Sixteenth International Joint Conference on Artificial Intelligence (IJ-
CAI ’99), pages 147–152.

Amir, E. and Maynard-Reid II, P. (2001). LiSA: A robot driven by logical sub-
sumption. In working notes of the CommonSense’01 symposium.

Amir, E. and McIlraith, S. (2003). Partition-based logical reasoning for first-order
and propositional theories. Artificial Intelligence. Accepted for publication.

Arkin, R. C. (1998). Behavior-based robotics. MIT Press.
Baral, C. and Tran, S. C. (1998). Relating theories of actions and reactive control.

Electronic Transactions on Artificial Intelligence (http://www.etaij.org), 2(3-
4):211–271.

Boutilier, C., Reiter, R., Soutchanski, M., and Thrun, S. (2000). Decision-theoretic,
high-level agent programming in the situation calculus. In Proc. National
Conference on Artificial Intelligence (AAAI ’00), pages 355–362. AAAI Press.

Brooks, R. A. (1986). A robust layered control system for a mobile robot. IEEE
Journal of Robotics and Automation, RA-2(1):14–23.

Brooks, R. A. (1990). Elephants don’t play chess. Journal of robotics and au-
tonomous systems(1-2), 6:3–15.

Brooks, R. A. and Flynn, A. M. (1989). Robot beings. In Proceedings of the

74

IEEE/RSJ Int’l Conference on Intelligent Robotics and Systems (IROS-89),
pages 2–10.

Brooks, R. A. and Stein, L. A. (1994). Building brains for bodies. Autonomous
Robots, 1(1):7–25.

Doherty, P., Gustafsson, J., Karlsson, L., and Kvarnström, J. (1998). Temporal ac-
tion logics (TAL) language specification and tutorial. Electronic Transactions
on Artificial Intelligence (http://www.etaij.org), 3:nr 15.

Farquhar, A. (1997). ATP. Stanford KSL Website.
http://www.ksl.stanford.edu/people/axf/reference-manual.html.

Gelfond, M. and Lifschitz, V. (1993). Representing Actions and Change by Logic
Programs. Journal of Logic Programming, 17:301–322.

Gelfond, M. and Lifschitz, V. (1998). Action languages. Electronic Transactions
on Artificial Intelligence (http://www.etaij.org), 3:nr 16.

Gelfond, M., Przymusinska, H., and Przymusinski, T. C. (1989). On the relation-
ship between circumscription and negation as failure. Artificial Intelligence,
38(1):75–94.

Giacomo, G. D., Lespérance, Y., and Levesque, H. J. (1997). Reasoning about
concurrent execution, prioritized interrupts, and exogenous actions in the situ-
ation calculus. In Proc. Fifteenth International Joint Conference on Artificial
Intelligence (IJCAI ’97), pages 1221–1226. Morgan Kaufmann.

Giacomo, G. D., Reiter, R., and Soutchanski, M. (1998). Execution monitoring
of high-level robot programs. In Cohn, A., Schubert, L., and Shapiro, S. C.,
editors, Proceedings of the 6th International Conference on Knowledge Rep-
resentation and Reasoning (KR-98), pages 453–464. Morgan Kaufmann.

Giunchiglia, E., Kartha, G. N., and Lifschitz, V. (1997). Representing Action: In-
determinacy and Ramifications. Artificial Intelligence, 95(2):409–438.

Giunchiglia, F. (1994). GETFOL manual - GETFOL version 2.0. Tech-
nical Report DIST-TR-92-0010, DIST - University of Genoa. Avail-
able at http://ftp.mrg.dist.unige.it/pub/mrg-ftp/92-0010.ps.gz, and website at
http://www-formal.stanford.edu/clt/ARS/Entries/getfol.

Gordon, M. J. and Melham, T., editors (1993). Introduction to HOL: a theorem
proving environment for higher-order logic. Cambridge University Press.
http://www.comlab.ox.ac.uk/archive/formal-methods/hol.html.

Grosskreutz, H. and Lakemeyer, G. (2000). cc-golog: Towards more realistic logic-
based robot controllers. In AAAI/IAAI, pages 476–482.

Horswill, I. (1993). Polly: A vision-based artificial agent. In Proceedings of the
11th National Conference on Artificial Intelligence, pages 824–829, Menlo
Park, CA, USA. AAAI Press.

Jung, C. G. (1999). Layered and resource-adapting agents in the robocup sim-
ulation. In Asada, M. and Kitano, H., editors, RoboCup-98: Robot Soccer
WorldCup II, volume 1604 of LNAI, pages 207–220. Springer.

Kaelbling, L. P. (1987). REX: A symbolic language for the design and parallel
implementation of embedded systems. In Proceedings of the AIAA conference
on computers in aerospace, pages 255–260.

Kaelbling, L. P. (1990). An architecture for intelligent reactive systems. In Allen,

75

J., Hendler, J., and Tate, A., editors, Readings in Planning, pages 713–728.
Morgan Kaufmann publishers Inc.: San Mateo, CA, USA.

Kaelbling, L. P. and Rosenschein, S. J. (1990). Action and planning in embedded
agents. Robotics and Autonomous Systems(1–2), June 1990, 6:35–48.

Kaufmann, M., Manolios, P., and Moore, J. S. (2000). Computer-
Aided Reasoning: An Approach. Kluwer Academic Publishers.
http://www.cs.utexas.edu/users/moore/acl2/acl2-doc.html.

Lakemeyer, G. (1999). On sensing and off-line interpreting in GOLOG. In
Levesque, H. and Pirri, F., editors, Logical Foundations for Cognitive Agents.
Springer.

Levesque, H. and Brachman, R. (1985). A fundamental tradeoff in knowledge rep-
resentation and reasoning. In Brachman, R. and Levesque, H., editors, Read-
ings in Knowledge Representation, pages 41–70. Morgan Kaufmann. Revised
from a paper that appeared with the same title in Proc. Fourth Conference of
the Canadian Society for Computational Studies of Intelligence.

Levesque, H., Reiter, R., Lesprance, Y., Lin, F., and Scherl, R. (1997). GOLOG:
A logic programming language for dynamic domains. Journal of Logic Pro-
gramming, 31:59–84.

Maes, P. (1989). The dynamics of action selection. In Proc. Eleventh International
Joint Conference on Artificial Intelligence (IJCAI ’89). Morgan Kaufmann.

Matarić, M. J. (1992). Integration of representation into goal-driven behavior-based
robots. IEEE Transactions on Robotics and Automation, 8(3):304–312.

McCarthy, J. (1958). Programs with common sense. In Mechanisation of Thought
Processes, Proceedings of the Symposium of the National Physics Laboratory,
pages 77–84, London, U.K. Her Majesty’s Stationery Office. Reprinted in
(McCarthy, 1990).

McCarthy, J. (1986). Applications of Circumscription to Formalizing Common
Sense Knowledge. Artificial Intelligence, 28:89–116.

McCarthy, J. (1990). Formalization of common sense, papers by John McCarthy
edited by V. Lifschitz. Ablex.

McCarthy, J. and Hayes, P. J. (1969). Some Philosophical Problems from the Stand-
point of Artificial Intelligence. In Meltzer, B. and Michie, D., editors, Machine
Intelligence 4, pages 463–502. Edinburgh University Press.

McCune, W. W. (1994). OTTER 3.0 Reference Manual and Guide. Argonne Na-
tional Laboratory/IL, USA. http://www-unix.mcs.anl.gov/AR/otter/.

Miller, R. and Shanahan, M. (1999). The event calculus in classical logic – al-
ternative axiomatizations. Electronic Transactions on Artificial Intelligence
(http://www.etaij.org), 4:nr 16. under review.

Minsky, M. (1985). The Society of Mind. Simon and Schuster.
Nakashima, H. and Noda, I. (1998). Dynamic subsumption architecture for pro-

gramming intelligent agents. In Proc. of International Conf. on Multi-Agent
Systems 98, pages 190–197. AAAI Press.

Nilsson, N. J. (1984). Shakey the robot. Technical Report 323, SRI International,
Menlo Park, California.

Reiter, R. (1991). The frame problem in the situation calculus: A simple solution

76

(sometimes) and a completeness result for goal regression. In Lifschitz, V., ed-
itor, Artificial Intelligence and Mathematical Theory of Computation (Papers
in Honor of John McCarthy), pages 359–380. Academic Press.

Reiter, R. (1996). Natural actions, concurrency and continuous time in the situation
calculus. In Principles of Knowledge Representation and Reasoning, Proceed-
ings of the fifth International Conference (KR ’96). Morgan Kaumann.

Reiter, R. (1998). Sequential, temporal GOLOG. In Principles of Knowledge Rep-
resentation and Reasoning: Proc. Sixth Int’l Conference (KR ’98). Morgan
Kaumann.

Rosenshein, S. J. and Kaelbling, L. P. (1995). A situated view of representation and
control. Artificial Intelligence, 73(1–2):149–173.

Rushby, J., Shankar, N., Ruess, H., Owre, S., Tiwari, A., Demoura, L., Saidi, H.,
and Dutertre, B. (1994-2003). The PVS specification and verification system.
SRI CSL Website. http://www.csl.sri.com/pvs.html.

Russell, S. J. and Wefald, E. (1989). Principles of metareasoning. In Brachman,
R. J., Levesque, H. J., and Reiter, R., editors, Proc. First International Con-
ference on Principles of Knowledge Representation and Reasoning (KR ’89),
pages 400–411. Morgan Kaufmann, San Mateo, California.

Sandewall, E. (1994). Features and Fluents. Oxford University Press.
Shanahan, M. (1998). A logical account of the common sense informatic situ-

ation for a mobile robot. Electronic Transactions on Artificial Intelligence
(http://www.etaij.org), 2:69–104.

Shanahan, M. (2000). Reinventing shakey. In Minker, J., editor, Logic-Based Arti-
ficial Intelligence. Kluwer.

Shanahan, M. and Witkowski, M. (2000). High-level robot control through logic.
In Castelfranchi, C. and Lesprance, Y., editors, Agent Theories, Architectures
and Languages: 7th International Workshop (ATAL’00). Springer.

Shanahan, M. P. (1996). Robotics and the common sense informatic situation. In
Proceedings ECAI 96, pages 684–688.

Stein, L. A. (1997). Postmodular systems: Architectural principles for cogni-
tive robotics. Cybernetics and Systems, 28(6):471–487. Available from
http://www.ai.mit.edu/people/las/cv.html.

Stickel, M. E. (1985). Automated deduction by theory resolution. Journal of Auto-
mated Reasoning, 1:333–355.

Stickel, M. E. (1988a). A Prolog technology theorem prover. In Lusk, E. and Over-
beek, R., editors, Proc. 9th International Conference on Automated Deduction,
pages 752–753. Springer LNCS, New York.

Stickel, M. E. (1988b). A Prolog Technology Theorem Prover: implementation by
an extended Prolog compiler. Journal of Automated Reasoning, 4:353–380.
Stickel, M. E.

Stickel, M. E. (1988-2003). Pttp theorem prover. SRI Website and QPQ Repository
for deductive software. http://www.ai.sri.com/ stickel/pttp.html.

Stickel, M. E. (1992). A Prolog Technology Theorem Prover: a new exposition and
implementation in Prolog. Theoretical Computer Science, 104:109–128.

Stolzenburg, F., Obst, O., Murray, J., , and Bremer, B. (2000). Spatial agents im-

77

plemented in a logical expressible language. In Veloso, M., Pagello, E., , and
Kitano, H., editors, RoboCup-99: Robot Soccer WorldCup III, volume 1856 of
LNAI, pages 481–494. Springer.

Thielscher, M. (1998). Introduction to the fluent calculus. Electronic Transactions
on Artificial Intelligence (http://www.etaij.org), 3:nr 14.

78

