Project

General

Profile

Statistics
| Branch: | Revision:

scoutos / scout / libscout / src / behaviors / navigationMap.cpp @ afa9104d

History | View | Annotate | Download (10.7 KB)

1
/**
2
 * Copyright (c) 2011 Colony Project
3
 * 
4
 * Permission is hereby granted, free of charge, to any person
5
 * obtaining a copy of this software and associated documentation
6
 * files (the "Software"), to deal in the Software without
7
 * restriction, including without limitation the rights to use,
8
 * copy, modify, merge, publish, distribute, sublicense, and/or sell
9
 * copies of the Software, and to permit persons to whom the
10
 * Software is furnished to do so, subject to the following
11
 * conditions:
12
 * 
13
 * The above copyright notice and this permission notice shall be
14
 * included in all copies or substantial portions of the Software.
15
 * 
16
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
17
 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
18
 * OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
19
 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
20
 * HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
21
 * WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
22
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
23
 * OTHER DEALINGS IN THE SOFTWARE.
24
 */
25

    
26
/**
27
 * @file navigationMap.cpp
28
 * @brief Contains navigation map Behavior declarations and definitions
29
 * 
30
 * Contains functions and definitions for the use of
31
 * navigation map Behavior 
32
 *
33
 * @author Colony Project, CMU Robotics Club
34
 * @author Priya Deo
35
 * @author Lalitha
36
 * @author James
37
 * @author Leon
38
 **/
39

    
40
#include "navigationMap.h"
41

    
42
using namespace std;
43

    
44
/**
45
 * @brief Initializes the navigation map
46
 *
47
 * Initialize the navigation map. 
48
 * The map itself is represented as a dynamic array of edge arrays
49
 * @param the string name of the scout
50
 */
51
navigationMap::navigationMap(string scoutname) : Behavior(scoutname, "navigationMap")
52
{
53
  /** Initialize Map 
54
   *
55
   *   1           2          3         4
56
   *  ----|-----------|----------|---------|---------->
57
   *  <---|--5--------|--6-------|--7------|--8-------
58
   *      |           |          |         |
59
   *     9|         10|        11|       12|
60
   *      |           |          |         |
61
   *     ---         ---        ---       ---
62
   */
63
  
64
    Edge* a1 = new Edge[ARRAY_SIZE];
65
    a1[0] = MAKE_EDGE(ISTRAIGHT, 2, 10);
66
    a1[1] = MAKE_EDGE(IRIGHT, 9, 40);
67
    a1[2] = MAKE_EDGE(IUTURN, DEADEND, 0);
68

    
69
    Edge* a2 = new Edge[ARRAY_SIZE]; 
70
    a2[0] = MAKE_EDGE(ISTRAIGHT, 3, 10);
71
    a2[1] = MAKE_EDGE(IRIGHT, 10, 40);
72
    a2[2] = MAKE_EDGE(IUTURN, 5, 10);
73

    
74
    Edge* a3 = new Edge[ARRAY_SIZE]; 
75
    a3[0] = MAKE_EDGE(ISTRAIGHT, 4, 10);
76
    a3[1] = MAKE_EDGE(IRIGHT, 11, 40);
77
    a3[2] = MAKE_EDGE(IUTURN, 6, 10);
78

    
79
    Edge* a4 = new Edge[ARRAY_SIZE]; 
80
    a4[0] = MAKE_EDGE(ISTRAIGHT, DEADEND, 0);
81
    a4[1] = MAKE_EDGE(IRIGHT, 12, 40);
82
    a4[2] = MAKE_EDGE(IUTURN, 7, 10);
83

    
84
    Edge* a5 = new Edge[ARRAY_SIZE];
85
    a5[0] = MAKE_EDGE(ISTRAIGHT, DEADEND, 0);
86
    a5[1] = MAKE_EDGE(ILEFT, 9, 40);
87
    a5[2] = MAKE_EDGE(IUTURN, 2, 10);
88

    
89
    Edge* a6 = new Edge[ARRAY_SIZE];
90
    a6[0] = MAKE_EDGE(ISTRAIGHT, 5, 0);
91
    a6[1] = MAKE_EDGE(ILEFT, 10, 40);
92
    a6[2] = MAKE_EDGE(IUTURN, 3, 10);
93

    
94
    Edge* a7 = new Edge[ARRAY_SIZE];
95
    a7[0] = MAKE_EDGE(ISTRAIGHT, 6, 0);
96
    a7[1] = MAKE_EDGE(ILEFT, 11, 40);
97
    a7[2] = MAKE_EDGE(IUTURN, 4, 10);
98

    
99
    Edge* a8 = new Edge[ARRAY_SIZE];
100
    a8[0] = MAKE_EDGE(ISTRAIGHT, 7, 0);
101
    a8[1] = MAKE_EDGE(ILEFT, 12, 40);
102
    a8[2] = MAKE_EDGE(IUTURN, DEADEND, 10);
103

    
104
    Edge* a9 = new Edge[ARRAY_SIZE];
105
    a9[0] = MAKE_EDGE(IRIGHT, 2, 10);
106
    a9[1] = MAKE_EDGE(ILEFT, DEADEND, 0);
107
    a9[2] = MAKE_EDGE(IUTURN, 9, 40);
108

    
109
    Edge* a10 = new Edge[ARRAY_SIZE];
110
    a10[0] = MAKE_EDGE(IRIGHT, 3, 10);
111
    a10[1] = MAKE_EDGE(ILEFT, 5, 10);
112
    a10[2] = MAKE_EDGE(IUTURN, 10, 40);
113

    
114
    Edge* a11 = new Edge[ARRAY_SIZE];
115
    a11[0] = MAKE_EDGE(IRIGHT, 4, 10);
116
    a11[1] = MAKE_EDGE(ILEFT, 6, 10);
117
    a11[2] = MAKE_EDGE(IUTURN, 11, 40);
118

    
119
    Edge* a12 = new Edge[ARRAY_SIZE];
120
    a12[0] = MAKE_EDGE(IRIGHT, DEADEND, 0);
121
    a12[1] = MAKE_EDGE(ILEFT, 7, 10);
122
    a12[2] = MAKE_EDGE(IUTURN, 12, 40);
123

    
124
    map.push_back(a1);
125
    map.push_back(a2);
126
    map.push_back(a3);
127
    map.push_back(a4);
128
    map.push_back(a5);
129
    map.push_back(a6);
130
    map.push_back(a7);
131
    map.push_back(a8);
132
    map.push_back(a9);
133
    map.push_back(a10);
134
    map.push_back(a11);
135
    map.push_back(a12);
136

    
137
    curr_state = START_STATE;
138
    arrival_time = ros::TIME_MAX;
139
}
140

    
141
/** @brief Goes through and frees all allocated memory */
142
navigationMap::~navigationMap()
143
{
144
  while(!map.empty())
145
  {
146
    Edge* temp = map.back();
147
    map.pop_back();
148
    delete temp;
149
  }
150
  return;
151
}
152

    
153
/** @brief FSM implementation*/
154
void navigationMap::run()
155
{
156
  Duration t;
157
  ROS_INFO("My state is: %d\n", curr_state);
158
  //Straight, straight, right, left, straight 5
159
  update_state(ISTRAIGHT);
160
  ROS_INFO("My state is: %d\n", curr_state);
161
  t = get_time_remaining();
162
  while(t.sec > 0)
163
    t = get_time_remaining();
164
  update_state(ISTRAIGHT);
165
  ROS_INFO("My state is: %d\n", curr_state);
166
  t = get_time_remaining();
167
  while(t.sec > 0)
168
    t = get_time_remaining();
169
  update_state(IRIGHT);
170
  ROS_INFO("My state is: %d\n", curr_state);
171
  t = get_time_remaining();
172
  while(t.sec > 0)
173
    t = get_time_remaining();
174
  update_state(ILEFT);
175
  ROS_INFO("My state is: %d\n", curr_state);
176
  t = get_time_remaining();
177
  while(t.sec > 0)
178
    t = get_time_remaining();
179
  update_state(ISTRAIGHT);
180
  ROS_INFO("My state is: %d\n", curr_state);
181
  t = get_time_remaining();
182
  while(t.sec > 0)
183
    t = get_time_remaining();
184
  ROS_INFO("Traveled route!\n");
185

    
186
  ROS_INFO("Going to state 6\n");
187
  Path path = shortest_path(6);
188
  if(path.path == NULL)
189
    return;
190

    
191
  ROS_INFO("Worst case time to 6 is %d", get_worst_case_time(curr_state, 6).sec);
192

    
193
  for(int i=0; i<path.len; i++)
194
  {
195
    update_state(path.path[i]);
196
    ROS_INFO("Made turn %d, at state %d\n", path.path[i], curr_state);
197
    t = get_time_remaining();
198
    while(t.sec > 0)
199
      t = get_time_remaining();
200
    ROS_INFO("Now at state %d\n", curr_state);
201
  }
202
  ROS_INFO("Traveled route!\n");
203

    
204
  while(ok())
205
    continue;
206
}
207

    
208
/**@brief sets the current state to the state associated with the turn made
209
 * @param the Turn that we made from our state
210
 * @return our new State after making the turn 
211
 */
212
State navigationMap::update_state(Turn turn_made)
213
{
214
  Edge* possible_edges = get_outbound_edges(curr_state);
215
  for(int i=0;i<ARRAY_SIZE;i++)
216
  {
217
    //sets the current state to the state associated with the turn made
218
    if(GET_EDGE_DIR(possible_edges[i]) == turn_made)
219
    {
220
      int speed = 10000;//its over 9000
221
      curr_state = GET_EDGE_STATE(possible_edges[i]);
222
      //TODO: get actual speed
223
      Duration travel_time(GET_EDGE_DIST(possible_edges[i])/speed);
224
      arrival_time = Time::now() + travel_time;
225
      return curr_state;
226
    }
227
  }
228
  return -1;//failure to succeed
229
}
230

    
231
/**@brief returns the predicted time of arrival for our current task
232
 * @return the predicted time of arrival for our current task
233
 */
234
Time navigationMap::get_eta()
235
{
236
  return arrival_time;
237
}
238

    
239
/**@brief returns the predicted amount of time it will take to finish our task
240
 * @return the predicted amount of time it will take to finish our task
241
 */
242
Duration navigationMap::get_time_remaining()
243
{
244
  return (arrival_time - Time::now());
245
}
246

    
247
/**@brief returns the current state of the scout in the map
248
 * @return the current State (ie: int) of the scout in the map
249
 */
250
State navigationMap::get_state()
251
{
252
  return curr_state;
253
}
254

    
255
/**@brief returns the Edges connecting from a given State
256
 * @param the State whose edges we want to get
257
 * @return the Edges connecting from the given State
258
 */
259
Edge* navigationMap::get_outbound_edges(State state)
260
{
261
  return map.at(state-1); 
262
}
263

    
264
/**@brief uses BFS to find the shortest path to a target State node
265
 * @param target_state the State that we want to get to
266
 * @return a Path struct containing the Turn* to take to get to the target state
267
 */
268
Path navigationMap::shortest_path(State target_state)
269
{
270
  return shortest_path(curr_state, target_state);
271
}
272

    
273
/**@brief uses BFS to find the shortest path to a target State node
274
 * @param start_state the State that we start from
275
 * @param target_state the State that we want to get to
276
 * @return a Path struct containing the Turn* to take to get to the target state
277
 */
278
Path navigationMap::shortest_path(State start_state, State target_state)
279
{
280
  // BFS algorithm
281
  State curr_state = start_state;
282
  int visited[MAX_NODES+1] = {0};
283

    
284
  queue<State> q;
285
  q.push(curr_state);
286
  // not zero = visited, zero = unvisited, negative = start state
287
  visited[curr_state] = -1;
288

    
289
  while (!q.empty())
290
  {
291
    State state = q.front();
292
    //actually dequeue it
293
    q.pop();
294
    if (state == target_state)
295
    {  
296
      Path path;
297
      path.path = (Turn*)calloc(sizeof(Turn), MAX_NODES);
298
      int j = 0; // counter
299
      for(State child = state; visited[child] >= 0; 
300
          child = visited[child]) //while not start state
301
      {
302
        State parent = visited[child];
303
        Edge* edges = get_outbound_edges(parent);
304
        for (int i = 0; i < ARRAY_SIZE; i++)
305
        {
306
          if (GET_EDGE_STATE(edges[i]) == child)
307
          {
308
            path.path[j] = GET_EDGE_DIR(edges[i]);
309
            j++;
310
            break;
311
          }
312
        }
313
      }
314
      /** Reverse moves list */
315
      for (int i = 0; i < j/2; i++)
316
      {
317
        path.path[i] ^= path.path[j-i-1];
318
        path.path[j-i-1] ^= path.path[i];
319
        path.path[i] ^= path.path[j-i-1];
320
      }
321
      path.len = j;
322
      return path;
323
    }
324
    Edge* edges = get_outbound_edges(state);
325

    
326
    for (int i = 0; i < ARRAY_SIZE; i++)
327
    {
328
      State new_state = GET_EDGE_STATE(edges[i]);
329
      if (new_state != DEADEND && !visited[new_state]) 
330
      {
331
        // set this state in visited as the parent of the new_state
332
        visited[new_state] = state;
333
        q.push(new_state);
334
      }
335
    }
336
  }
337
  //oops, no way to get to target from state
338
  Path path;
339
  path.len = 0;
340
  path.path = NULL;
341
  return path;
342
}
343

    
344
/** @brief returns worst case time to travel to dest
345
 *
346
 *  Takes into account speed of robot and interactions with other robots
347
 *
348
 *  @param start_state Node that we start at
349
 *  @param target_state Node that we end up at
350
 *  @return the worst case time to travel to target node
351
 */
352
Duration navigationMap::get_worst_case_time(State start_state, State target_state)
353
{
354
  Path path = shortest_path(start_state, target_state);
355
  Duration worst_case_time(0);
356

    
357
  State curr_state = start_state;
358
  //keep iterating over path while there are turns
359
  for(int i=0; i<path.len; i++)
360
  {
361
    Edge* edges = get_outbound_edges(curr_state); 
362
    for(int j=0; j<ARRAY_SIZE; j++)
363
    {
364
      if(GET_EDGE_DIR(edges[j]) == path.path[i])
365
      {
366
        Duration turn_time(TURN_TIME + (GET_EDGE_DIST(edges[j])/SPEED));
367
        worst_case_time += turn_time;
368
      }
369
    }
370
  }
371
  Duration additional_time(DROPOFF_TIME + WAIT_TIME);
372
  worst_case_time += additional_time; 
373

    
374
  return worst_case_time;
375
}