Project

General

Profile

Statistics
| Branch: | Revision:

scoutos / scout / libscout / src / behaviors / navigationMap.cpp @ 11aa087a

History | View | Annotate | Download (10.7 KB)

1
/**
2
 * Copyright (c) 2011 Colony Project
3
 * 
4
 * Permission is hereby granted, free of charge, to any person
5
 * obtaining a copy of this software and associated documentation
6
 * files (the "Software"), to deal in the Software without
7
 * restriction, including without limitation the rights to use,
8
 * copy, modify, merge, publish, distribute, sublicense, and/or sell
9
 * copies of the Software, and to permit persons to whom the
10
 * Software is furnished to do so, subject to the following
11
 * conditions:
12
 * 
13
 * The above copyright notice and this permission notice shall be
14
 * included in all copies or substantial portions of the Software.
15
 * 
16
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
17
 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
18
 * OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
19
 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
20
 * HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
21
 * WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
22
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
23
 * OTHER DEALINGS IN THE SOFTWARE.
24
 */
25

    
26
/**
27
 * @file navigationMap.cpp
28
 * @brief Contains navigation map Behavior declarations and definitions
29
 * 
30
 * Contains functions and definitions for the use of
31
 * navigation map Behavior 
32
 *
33
 * @author Colony Project, CMU Robotics Club
34
 * @author Priya Deo
35
 * @author Lalitha
36
 * @author James
37
 * @author Leon
38
 **/
39

    
40
#include "navigationMap.h"
41

    
42
using namespace std;
43

    
44
/**
45
 * @brief Initializes the navigation map
46
 *
47
 * Initialize the navigation map. 
48
 * The map itself is represented as a dynamic array of edge arrays
49
 * @param the string name of the scout
50
 */
51
navigationMap::navigationMap(string scoutname) : Behavior(scoutname, "navigationMap")
52
{
53
  /** Initialize Map 
54
   *                     _____
55
   *   1           2     |    | 3         4
56
   *  ----|-----------|--|----|--|---------|---------->
57
   *  <---|--5--------|--6-------|--7------|--8-------
58
   *      |           |          |         |
59
   *     9|         10|        11|       12|
60
   *      |           |          |         |
61
   *     ---13       ---14      ---15     ---16
62
   */
63
  
64
    Edge* a1 = new Edge[ARRAY_SIZE];
65
    a1[0] = MAKE_EDGE(ISTRAIGHT, 2, 10);
66
    a1[1] = MAKE_EDGE(IRIGHT, 13, 40);
67
    a1[2] = MAKE_EDGE(IUTURN, DEADEND, 0);
68

    
69
    Edge* a2 = new Edge[ARRAY_SIZE]; 
70
    a2[0] = MAKE_EDGE(ISTRAIGHT, 3, 10);
71
    a2[1] = MAKE_EDGE(IRIGHT, 14, 40);
72
    a2[2] = MAKE_EDGE(IUTURN, 5, 10);
73

    
74
    Edge* a3 = new Edge[ARRAY_SIZE]; 
75
    a3[0] = MAKE_EDGE(ISTRAIGHT, 4, 10);
76
    a3[1] = MAKE_EDGE(IRIGHT, 15, 40);
77
    a3[2] = MAKE_EDGE(IUTURN, 6, 10);
78

    
79
    Edge* a4 = new Edge[ARRAY_SIZE]; 
80
    a4[0] = MAKE_EDGE(ISTRAIGHT, DEADEND, 0);
81
    a4[1] = MAKE_EDGE(IRIGHT, 16, 40);
82
    a4[2] = MAKE_EDGE(IUTURN, 7, 10);
83

    
84
    Edge* a5 = new Edge[ARRAY_SIZE];
85
    a5[0] = MAKE_EDGE(ISTRAIGHT, DEADEND, 0);
86
    a5[1] = MAKE_EDGE(ILEFT, 13, 40);
87
    a5[2] = MAKE_EDGE(IUTURN, 2, 10);
88

    
89
    Edge* a6 = new Edge[ARRAY_SIZE];
90
    a6[0] = MAKE_EDGE(ISTRAIGHT, 5, 0);
91
    a6[1] = MAKE_EDGE(ILEFT, 14, 40);
92
    a6[2] = MAKE_EDGE(IUTURN, 3, 10);
93

    
94
    Edge* a7 = new Edge[ARRAY_SIZE];
95
    a7[0] = MAKE_EDGE(ISTRAIGHT, 6, 0);
96
    a7[1] = MAKE_EDGE(ILEFT, 15, 40);
97
    a7[2] = MAKE_EDGE(IUTURN, 4, 10);
98

    
99
    Edge* a8 = new Edge[ARRAY_SIZE];
100
    a8[0] = MAKE_EDGE(ISTRAIGHT, 7, 0);
101
    a8[1] = MAKE_EDGE(ILEFT, 16, 40);
102
    a8[2] = MAKE_EDGE(IUTURN, DEADEND, 10);
103

    
104
    Edge* a9 = new Edge[ARRAY_SIZE];
105
    a9[0] = MAKE_EDGE(IRIGHT, 2, 10);
106
    a9[1] = MAKE_EDGE(ILEFT, DEADEND, 0);
107
    a9[2] = MAKE_EDGE(ISPOTTURN, 13, 40);
108

    
109
    Edge* a10 = new Edge[ARRAY_SIZE];
110
    a10[0] = MAKE_EDGE(IRIGHT, 3, 10);
111
    a10[1] = MAKE_EDGE(ILEFT, 5, 10);
112
    a10[2] = MAKE_EDGE(ISPOTTURN, 14, 40);
113

    
114
    Edge* a11 = new Edge[ARRAY_SIZE];
115
    a11[0] = MAKE_EDGE(IRIGHT, 4, 10);
116
    a11[1] = MAKE_EDGE(ILEFT, 6, 10);
117
    a11[2] = MAKE_EDGE(ISPOTTURN, 15, 40);
118

    
119
    Edge* a12 = new Edge[ARRAY_SIZE];
120
    a12[0] = MAKE_EDGE(IRIGHT, DEADEND, 0);
121
    a12[1] = MAKE_EDGE(ILEFT, 7, 10);
122
    a12[2] = MAKE_EDGE(ISPOTTURN, 16, 40);
123

    
124
    Edge* a13 = new Edge[ARRAY_SIZE];
125
    a13[0] = MAKE_EDGE(IRIGHT, DEADEND, 0);
126
    a13[1] = MAKE_EDGE(ILEFT, DEADEND, 0);
127
    a13[2] = MAKE_EDGE(ISPOTTURN, 9, 40);
128

    
129
    Edge* a14 = new Edge[ARRAY_SIZE];
130
    a14[0] = MAKE_EDGE(IRIGHT, DEADEND, 0);
131
    a14[1] = MAKE_EDGE(ILEFT, DEADEND, 0);
132
    a14[2] = MAKE_EDGE(ISPOTTURN, 10, 40);
133

    
134
    Edge* a15 = new Edge[ARRAY_SIZE];
135
    a15[0] = MAKE_EDGE(IRIGHT, DEADEND, 0);
136
    a15[1] = MAKE_EDGE(ILEFT, DEADEND, 0);
137
    a15[2] = MAKE_EDGE(ISPOTTURN, 11, 40);
138

    
139
    Edge* a16 = new Edge[ARRAY_SIZE];
140
    a16[0] = MAKE_EDGE(IRIGHT, DEADEND, 0);
141
    a16[1] = MAKE_EDGE(ILEFT, DEADEND, 0);
142
    a16[2] = MAKE_EDGE(ISPOTTURN, 12, 40);
143

    
144

    
145
    map.push_back(a1);
146
    map.push_back(a2);
147
    map.push_back(a3);
148
    map.push_back(a4);
149
    map.push_back(a5);
150
    map.push_back(a6);
151
    map.push_back(a7);
152
    map.push_back(a8);
153
    map.push_back(a9);
154
    map.push_back(a10);
155
    map.push_back(a11);
156
    map.push_back(a12);
157
    map.push_back(a13);
158
    map.push_back(a14);
159
    map.push_back(a15);
160
    map.push_back(a16);
161

    
162
    curr_state = START_STATE;
163
    arrival_time = ros::TIME_MAX;
164
}
165

    
166
/** @brief Goes through and frees all allocated memory */
167
navigationMap::~navigationMap()
168
{
169
  while(!map.empty())
170
  {
171
    Edge* temp = map.back();
172
    map.pop_back();
173
    delete temp;
174
  }
175
  return;
176
}
177

    
178
/** @brief FSM implementation*/
179
void navigationMap::run()
180
{
181
  Duration t;
182

    
183
  ROS_INFO("Going to state 16\n");
184
  Path path = shortest_path(16);
185
  if(path.path == NULL)
186
  {
187
    ROS_WARN("There is no path to state 16");
188
    return;
189
  }
190

    
191
  ROS_INFO("Worst case time to 16 is %d", get_worst_case_time(curr_state, 6).sec);
192

    
193
  for(int i=0; i<path.len; i++)
194
  {
195
    update_state(path.path[i]);
196
    ROS_INFO("Made turn %d, at state %d\n", path.path[i], curr_state);
197
    t = get_time_remaining();
198
    while(t.sec > 0)
199
      t = get_time_remaining();
200
    ROS_INFO("Now at state %d\n", curr_state);
201
  }
202

    
203
  ROS_INFO("Traveled route!\n");
204

    
205
  while(ok())
206
    continue;
207
}
208

    
209
/**@brief sets the current state to the state associated with the turn made
210
 * @param the Turn that we made from our state
211
 * @return our new State after making the turn 
212
 */
213
State navigationMap::update_state(Turn turn_made)
214
{
215
  Edge* possible_edges = get_outbound_edges(curr_state);
216
  for(int i=0;i<ARRAY_SIZE;i++)
217
  {
218
    //sets the current state to the state associated with the turn made
219
    if(GET_EDGE_DIR(possible_edges[i]) == turn_made)
220
    {
221
      //TODO: get actual speed
222
      int speed = 10;
223
      curr_state = GET_EDGE_STATE(possible_edges[i]);
224
      Duration travel_time(GET_EDGE_DIST(possible_edges[i])/speed);
225
      arrival_time = Time::now() + travel_time;
226
      return curr_state;
227
    }
228
  }
229
  return -1;//failure to succeed
230
}
231

    
232
/**@brief returns the predicted time of arrival for our current task
233
 * @return the predicted time of arrival for our current task
234
 */
235
Time navigationMap::get_eta()
236
{
237
  return arrival_time;
238
}
239

    
240
/**@brief returns the predicted amount of time it will take to finish our task
241
 * @return the predicted amount of time it will take to finish our task
242
 */
243
Duration navigationMap::get_time_remaining()
244
{
245
  return (arrival_time - Time::now());
246
}
247

    
248
/**@brief returns the current state of the scout in the map
249
 * @return the current State (ie: int) of the scout in the map
250
 */
251
State navigationMap::get_state()
252
{
253
  return curr_state;
254
}
255

    
256
/**@brief returns the Edges connecting from a given State
257
 * @param the State whose edges we want to get
258
 * @return the Edges connecting from the given State
259
 */
260
Edge* navigationMap::get_outbound_edges(State state)
261
{
262
  return map.at(state-1); 
263
}
264

    
265
/**@brief uses BFS to find the shortest path to a target State node
266
 * @param target_state the State that we want to get to
267
 * @return a Path struct containing the Turn* to take to get to the target state
268
 */
269
Path navigationMap::shortest_path(State target_state)
270
{
271
  return shortest_path(curr_state, target_state);
272
}
273

    
274
/**@brief uses BFS to find the shortest path to a target State node
275
 * @param start_state the State that we start from
276
 * @param target_state the State that we want to get to
277
 * @return a Path struct containing the Turn* to take to get to the target state
278
 */
279
Path navigationMap::shortest_path(State start_state, State target_state)
280
{
281
  // BFS algorithm
282
  State curr_state = start_state;
283
  int visited[MAX_NODES+1] = {0};
284

    
285
  queue<State> q;
286
  q.push(curr_state);
287
  // not zero = visited, zero = unvisited, negative = start state
288
  visited[curr_state] = -1;
289

    
290
  while (!q.empty())
291
  {
292
    State state = q.front();
293
    //actually dequeue it
294
    q.pop();
295
    if (state == target_state)
296
    {  
297
      Path path;
298
      path.path = (Turn*)calloc(sizeof(Turn), MAX_NODES);
299
      int j = 0; // counter
300
      for(State child = state; visited[child] >= 0; 
301
          child = visited[child]) //while not start state
302
      {
303
        State parent = visited[child];
304
        Edge* edges = get_outbound_edges(parent);
305
        for (int i = 0; i < ARRAY_SIZE; i++)
306
        {
307
          if (GET_EDGE_STATE(edges[i]) == child)
308
          {
309
            path.path[j] = GET_EDGE_DIR(edges[i]);
310
            j++;
311
            break;
312
          }
313
        }
314
      }
315
      /** Reverse moves list */
316
      for (int i = 0; i < j/2; i++)
317
      {
318
        path.path[i] ^= path.path[j-i-1];
319
        path.path[j-i-1] ^= path.path[i];
320
        path.path[i] ^= path.path[j-i-1];
321
      }
322
      path.len = j;
323
      return path;
324
    }
325
    Edge* edges = get_outbound_edges(state);
326

    
327
    for (int i = 0; i < ARRAY_SIZE; i++)
328
    {
329
      State new_state = GET_EDGE_STATE(edges[i]);
330
      if (new_state != DEADEND && !visited[new_state]) 
331
      {
332
        // set this state in visited as the parent of the new_state
333
        visited[new_state] = state;
334
        q.push(new_state);
335
      }
336
    }
337
  }
338
  //oops, no way to get to target from state
339
  Path path;
340
  path.len = 0;
341
  path.path = NULL;
342
  return path;
343
}
344

    
345
/** @brief returns worst case time to travel to dest
346
 *
347
 *  Takes into account speed of robot and interactions with other robots
348
 *
349
 *  @param start_state Node that we start at
350
 *  @param target_state Node that we end up at
351
 *  @return the worst case time to travel to target node
352
 */
353
Duration navigationMap::get_worst_case_time(State start_state, State target_state)
354
{
355
  Path path = shortest_path(start_state, target_state);
356
  Duration worst_case_time(0);
357

    
358
  State curr_state = start_state;
359
  //keep iterating over path while there are turns
360
  for(int i=0; i<path.len; i++)
361
  {
362
    Edge* edges = get_outbound_edges(curr_state); 
363
    for(int j=0; j<ARRAY_SIZE; j++)
364
    {
365
      if(GET_EDGE_DIR(edges[j]) == path.path[i])
366
      {
367
        Duration turn_time(TURN_TIME + (GET_EDGE_DIST(edges[j])/SPEED));
368
        worst_case_time += turn_time;
369
      }
370
    }
371
  }
372
  Duration additional_time(DROPOFF_TIME + WAIT_TIME);
373
  worst_case_time += additional_time; 
374

    
375
  return worst_case_time;
376
}