
QEC121 QEC122 QEC123

DESCRIPTION

The QEC12X is an 880 nm AlGaAs LED encapsulated in a clear purple tinted, plastic T-1 package.

FEATURES

- λ= 880 nm
- Chip material = AlGaAs
- Package type: T-1 (3mm lens diameter)
- Matched Photosensor: QSC112/113/114
- Narrow Emission Angle, 16°
- High Output Power
- Package material and color: Clear, purple tinted, plastic

QEC121 QEC123 QEC123

ABSOLUTE MAXIMUM RATINGS (T _A = 25°C unless otherwise specified)							
Parameter	Symbol	Rating	Unit				
Operating Temperature	T _{OPR}	-40 to +100	°C				
Storage Temperature	T _{STG}	-40 to +100	°C				
Soldering Temperature (Iron)(2,3,4)	T _{SOL-I}	240 for 5 sec	°C				
Soldering Temperature (Flow)(2,3)	T _{SOL-F}	260 for 10 sec	°C				
Continuous Forward Current	I _F	50	mA				
Reverse Voltage	V _R	5	V				
Power Dissipation ⁽¹⁾	P _D	100	mW				

NOTES

- 1. Derate power dissipation linearly 1.33 mW/°C above 25°C.
- 2. RMA flux is recommended.
- 3. Methanol or isopropyl alcohols are recommended as cleaning agents.
- 4. Soldering iron 1/16" (1.6mm) minimum from housing.

ELECTRICAL / OPTICAL CHARACTERISTICS (T _A = 25°C)								
PARAMETER	TEST CONDITIONS	SYMBOL	MIN	TYP	MAX	UNITS		
Peak Emission Wavelength	I _F = 100 mA	λ_{PE}	_	880	_	nm		
Emission Angle	I _F = 100 mA	201/2	_	16	_	Deg.		
Forward Voltage	$I_F = 100 \text{ mA}, \text{ tp} = 20 \text{ ms}$	V _F	_	_	1.7	V		
Reverse Current	V _R = 5 V	I _R	_	_	10	μA		
Radiant IntensityQEC121	$I_F = 100 \text{ mA}, \text{ tp} = 20 \text{ ms}$	Ι _Ε	14	_	_	mW/sr		
Radiant IntensityQEC122	$I_F = 100 \text{ mA}, \text{ tp} = 20 \text{ ms}$	Ι _Ε	27	_	94	mW/sr		
Radiant IntensityQEC123	$I_F = 100 \text{ mA}, \text{ tp} = 20 \text{ ms}$	Ι _Ε	39	_	_	mW/sr		
Rise Time	I _E = 100 mA	t _r	_	800	_	ns		
Fall Time	I _F = 100 IIIA	t _f	_	800	_	ns		

QEC121 QEC122 QEC123

Fig.1 Normalized Radiant Intensity vs. Forward Current

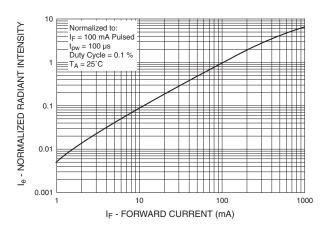


Fig.3 Forward Voltage vs. Ambient Temperature

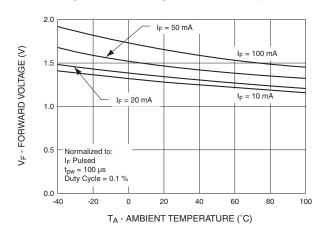


Fig.2 Coupling Characteristics of QEC12X And QSC11X

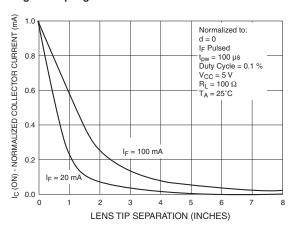


Fig. 4 Normalized Radiant Intensity vs. Wavelength

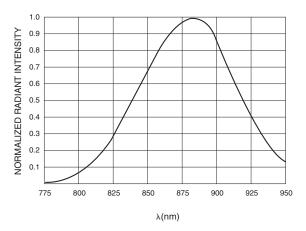
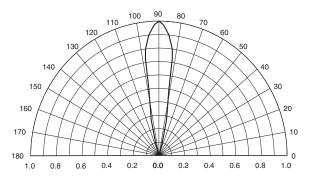



Fig. 5 Radiation Diagram

QEC121 QEC122 QEC123

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body,or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.