

Data sheet acquired from Harris Semiconductor SCHS209C

February 1998 - Revised July 2003

High-Speed CMOS Logic 16-Channel Analog Multiplexer/Demultiplexer

Features

- Wide Analog Input Voltage Range
- Low "ON" Resistance

-	V _{CC} = 4.5V	70 Ω(Typ)
-	Vcc = 6V	60Ω (Tvp)

- Fast Switching and Propagation Speeds
- "Break-Before-Make" Switching. 6ns (Typ) at 4.5V
- Available in Both Narrow and Wide-Body Plastic Packages
- Fanout (Over Temperature Range)
- Wide Operating Temperature Range ... -55°C to 125°C
- Balanced Propagation Delay and Transition Times
- Significant Power Reduction Compared to LSTTL Logic ICs
- HC Types
 - 2V to 6V Operation
 - High Noise Immunity: N_{IL} = 30%, N_{IH} = 30% of V_{CC} at V_{CC} = 5V
- HCT Types
 - 4.5V to 5.5V Operation
 - Direct LSTTL Input Logic Compatibility,
 V_{IL}= 0.8V (Max), V_{IH} = 2V (Min)
 - CMOS Input Compatibility, I_I \leq 1 μ A at V_{OL}, V_{OH}

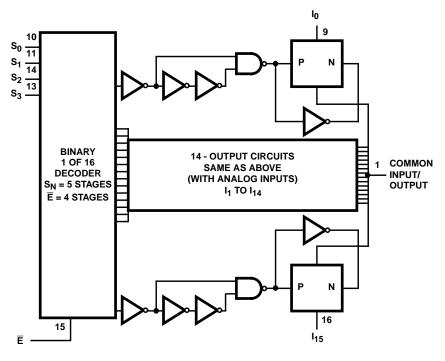
Description

The CD74HC4067 and CD74HCT4067 devices are digitally controlled analog switches that utilize silicon-gate CMOS technology to achieve operating speeds similar to LSTTL, with the low power consumption of standard CMOS integrated circuits.

These analog multiplexers/demultiplexers control analog voltages that may vary across the voltage supply range. They are bidirectional switches thus allowing any analog input to be used as an output and vice-versa. The switches have low "on" resistance and low "off" leakages. In addition, these devices have an enable control which when high will disable all switches to their "off" state.

Ordering Information

PART NUMBER	TEMP. RANGE (°C)	PACKAGE
CD74HC4067E	-55 to 125	24 Ld PDIP
CD74HC4067M	-55 to 125	24 Ld SOIC
CD74HC4067M96	-55 to 125	24 Ld SOIC
CD74HC4067SM96	-55 to 125	24 Ld SSOP
CD74HCT4067M	-55 to 125	24 Ld SOIC


NOTE: When ordering, use the entire part number. The suffix 96 denotes tape and reel.

Pinout

CD74HC4067 (PDIP, SOIC, SSOP) CD74HCT4067 (SOIC) TOP VIEW

COMMON INPUT/OUTPUT 1 24 V_{CC} I₇ 2 23 I₈ 22 lg 20 I₁₁ 19 l₁₂ 18 I₁₃ 17 I₁₄ 16 I₁₅ lο So 10 15 E S₁ 14 S₂ GND 12 13 S₃

Functional Diagram

TRUTH TABLE

S0	S 1	S2	S 3	Ē	SELECTED CHANNEL
Х	Х	Х	Х	1	None
0	0	0	0	0	0
1	0	0	0	0	1
0	1	0	0	0	2
1	1	0	0	0	3
0	0	1	0	0	4
1	0	1	0	0	5
0	1	1	0	0	6
1	1	1	0	0	7
0	0	0	1	0	8
1	0	0	1	0	9
0	1	0	1	0	10
1	1	0	1	0	11
0	0	1	1	0	12
1	0	1	1	0	13
0	1	1	1	0	14
1	1	1	1	0	15

H= High Level L= Low Level

X= Don't Care

Absolute Maximum Ratings

Thermal Information

Thermal Resistance (Typical)	θ_{JA} (oC/W)
E (PDIP) Package, Note 1	67
M (SOIC) Package, Note 2	46
SM (SSOP) Package, Note 2	63
Maximum Junction Temperature (Plastic Package)	150 ^o C
Maximum Storage Temperature Range	65°C to 150°C

Operating Conditions

Temperature Range, T _A	5°C to 125°C
Supply Voltage Range, V _{CC}	
HC Types	2V to 6V
HCT Types	.4.5V to 5.5V
DC Input or Output Voltage, V _I , V _O	0V to $V_{\hbox{\scriptsize CC}}$
Input Rise and Fall Time	
2V	1000ns (Max)
4.5V	500ns (Max)
6V	400ns (Max)

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTES

- 1. The package thermal impedance is calculated in accordance with JESD 51-3.
- 2. The package thermal impedance is calculated in accordance with JESD 51-7.

DC Electrical Specifications

		TE CONDI	-			25°C		-40°C TO 85°C		5°C -55°C TO 125°C		
PARAMETER	SYMBOL	V _I (V)	V _{IS} (V)	V _{CC} (V)	MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNITS
HC TYPES												
High Level Input	V _{IH}	-	-	2	1.5	-	-	1.5	-	1.5	-	V
Voltage				4.5	3.15	-	-	3.15	-	3.15	-	٧
				6	4.2	-	-	4.2	-	4.2	-	V
Low Level Input	V _{IL}	-	-	2	-	-	0.5	-	0.5	-	0.5	V
Voltage				4.5	-	-	1.35	-	1.35	-	1.35	٧
				6	-	-	1.8	-	1.8	-	1.8	٧
Maximum "ON"	R _{ON}	RON VCC or VCC or GND	4.5	-	70	160	-	200	-	240	Ω	
Resistance I _O = 1mA			GND GND	6	-	60	140	-	175	-	210	Ω
		V _{CC} to GND	V _{CC} to	4.5	-	90	180	-	225	-	270	Ω
			GND	6	-	80	160	-	200	-	240	Ω
Maximum "ON"	ΔR_{ON}	-	-	4.5	-	10	-	-	-	-	-	Ω
Resistance Between Any Two Switches				6	-	8.5	-	-	-	-	-	Ω
Switch "Off" Leakage Current 16 Channels	I _{IZ}	Ē = V _{CC}	V _{CC} or GND	6	-	-	±0.8	-	±8	-	±8	μА
Logic Input Leakage Current	II	V _{CC} or GND	-	6	-	-	±0.1	-	±1	-	±1	μА

DC Electrical Specifications (Continued)

		TE CONDI	ST ITIONS		25°C			-40°C TO 85°C		-55°C TO 125°C		
PARAMETER	SYMBOL	V _I (V)	V _{IS} (V)	V _{CC} (V)	MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNITS
Quiescent Device Current I _O = 0mA	Icc	V _{CC} or GND	-	6	-	-	8	-	80	-	160	μА
HCT TYPES	•	•		•							•	
High Level Input Voltage	V _{IH}	-	-	4.5	2	-	-	2	-	2	-	V
Low Level Input Voltage	V _{IL}	-	-	4.5	-	-	0.8	-	0.8	-	0.8	V
Maximum "ON" Resistance	R _{ON}	V _{CC} or GND	V _{CC} or GND	4.5	-	70	160	-	200	-	240	Ω
I _O = 1mA		V _{CC} to GND	V _{CC} to GND	4.5	-	90	180	-	225	-	270	Ω
Maximum "ON" Resistance Between Any Two Switches	ΔR _{ON}	-	-	4.5	-	10	-	-	-	-	-	Ω
Switch "Off" Leakage Current 16 Channels	I _{IZ}	E = V _{CC}	V _{CC} or GND	6	-	-	±0.8	-	±8	-	±8	μА
Logic Input Leakage Current	II	V _{CC} or GND (Note 3)	-	6	-	-	±0.1	-	±1	-	±1	μА
Quiescent Device Current	Icc	V _{CC} or GND	-	6	-	-	8	-	80	-	160	μА
Additional Quiescent Device Current Per Input Pin: 1 Unit Load	ΔI _{CC} (Note 4)	V _{CC} -2.1	-	-	-	100	360	-	450	-	490	μА

NOTES:

- 3. Any voltage between $V_{\mbox{\footnotesize CC}}$ and GND.
- 4. For dual-supply systems theoretical worst case (V_I = 2.4V, V_{CC} = 5.5V) specification is 1.8mA.

HCT Input Loading Table

INPUT	UNIT LOAD
S ₀ - S ₃	0.5
Ē	0.3

NOTE: Unit Load is ΔI_{CC} limit specified in DC Electrical Specifications table, e.g., $360\mu A$ max at $25^{\circ}C$.

Switching Specifications Input t_r, t_f = 6ns

		TEST	TEST	v _{cc}		25°C		-40°C T	O 85°C	-55°C T	O 125°C	
PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNITS	
HC TYPES	HC TYPES											
Propagation Delay Time	t _{PLH} , t _{PHL}	C _L = 50pF	2	-	-	75	-	95	-	110	ns	
Switch In to Out			4.5	-	-	15	-	19	-	22	ns	
				6	-	-	13	-	16	-	19	ns
		C _L = 15pF	5	-	6	1	-	-	-	-	ns	

Switching Specifications Input t_r , t_f = 6ns (Continued)

		TEST	v _{cc}		25°C		-40°C 1	O 85°C	-55°C T	O 125°C	
PARAMETER	SYMBOL	CONDITIONS	(V)	MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNITS
Switch Turn On	t _{PZH} , t _{PZL}	C _L = 50pF	2	-	-	275	-	345	-	415	ns
Ē to Out			4.5	-	-	55	-	69	-	83	ns
			6	-	-	47	-	59	-	71	ns
		C _L = 15pF	5	-	23	-	i	-	-	-	ns
Switch Turn On	t _{PZH} , t _{PZL}	C _L = 50pF	2	-	-	300	-	375	-	450	ns
Sn to Out			4.5	-	-	60	·	75	-	90	ns
			6	-	-	51	i	64	-	76	ns
		C _L = 15pF	5	-	25	-	-	-	-	-	ns
Switch Turn Off	t _{PHZ} , t _{PLZ}	C _L = 50pF	2	-	-	275	-	345	-	415	ns
E to Out			4.5	-	-	55	-	69	-	83	ns
			6	-	-	47	-	59	-	71	ns
		C _L = 15pF	5	-	23	-	-	-	-	-	ns
Switch Turn Off	t _{PHZ} , t _{PLZ}	C _L = 50pF	2	-	-	290	-	365	-	435	ns
Sn to Out			4.5	-	-	58	-	73	-	87	ns
			6	-	-	49	-	62	-	74	ns
		C _L = 50pF	5	-	21	-	-	-	-	-	ns
Input (Control) Capacitance	Cl	-	-	-	-	10	-	10	-	10	pF
Power Dissipation Capacitance (Notes 5, 6)	C _{PD}	-	5	-	93	-	-	-	-	-	pF
HCT TYPES					•			•	•		
Propagation Delay Time	t _{PLH} , t _{PHL}	C _L = 50pF	4.5	-	-	15	-	19	-	22	ns
Switch In to Out		C _L = 15pF	5	-	6	-	-	-	-	-	ns
Switch Turn On	t _{PZH} , t _{PZL}	C _L = 50pF	4.5	-	-	60	-	75	-	90	ns
E to Out		C _L = 15pF	5	-	25	-	-	-	-	-	ns
Switch Turn On	t _{PZH} , t _{PZL}	C _L = 50pF	4.5	-	-	60	-	75	-	90	ns
Sn to Out		C _L = 15pF	5	-	25	-	-	-	-	-	ns
Switch Turn Off	t _{PHZ} , t _{PLZ}	C _L = 50pF	4.5	-	-	55	-	69	-	83	ns
E to Out		C _L = 15pF	5	-	23	-	-	-	-	-	ns
Switch Turn Off	t _{PHZ} , t _{PLZ}	C _L = 50pF	4.5	-	-	58	-	73	-	87	ns
Sn to Out		C _L = 15pF	5	-	21	-	-	-	-	-	ns
Input (Control) Capacitance	Cl	-	-	-	-	10	-	10	-	10	pF
Power Dissipation Capacitance (Notes 5, 6)	C _{PD}	-	5	-	96	-	-	-	-	-	pF

NOTES:

- 5. $\ensuremath{C_{\text{PD}}}$ is used to determine the dynamic power consumption, per package.
- 6. $P_D = C_{PD} \ V_{CC}^2 \ f_i + \Sigma \ (C_L + C_S) \ V_{CC}^2 \ f_o$ where f_i = input frequency, f_o = output frequency, C_L = output load capacitance, C_S = switch capacitance, V_{CC} = supply voltage.

Analog Channel Specifications $T_A = 25^{\circ}C$

PARAMETER	TEST CONDITIONS	V _{CC} (V)	нс/нст	UNITS
Switch Frequency Response Bandwidth at -3dB (Figure 2)	Figure 4, Notes 7, 8	4.5	89	MHz
Sine Wave Distortion	Figure 5	4.5	0.051	%
Feedthrough Noise E to Switch	Figure 6, Notes 8, 9	4.5	TBE	mV
Feedthrough Noise S to Switch			TBE	mV
Switch "OFF" Signal Feedthrough (Figure 3)	Figure 7	4.5	-75	dB
Switch Input Capacitance, C _S		-	5	pF
Common Capacitance, C _{COM}		-	50	pF

NOTES:

- 7. Adjust input level for 0dBm at output, f = 1MHz.
- 8. V_{IS} is centered at $V_{CC}/2$.
- 9. Adjust input for 0dBm at $V_{\mbox{\scriptsize IS}}$.

Typical Performance Curves

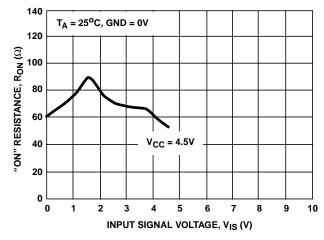


FIGURE 1. TYPICAL "ON" RESISTANCE vs INPUT SIGNAL VOLTAGE

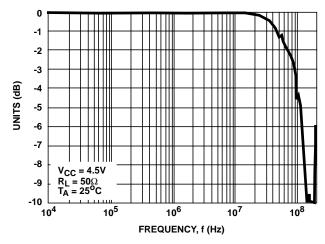


FIGURE 2. TYPICAL SWITCH FREQUENCY RESPONSE

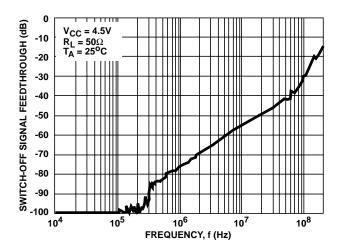


FIGURE 3. TYPICAL SWITCH-OFF SIGNAL FEEDTHROUGH vs FREQUENCY

Analog Test Circuits

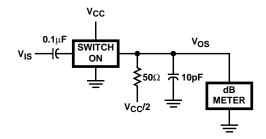


FIGURE 4. FREQUENCY RESPONSE TEST CIRCUIT

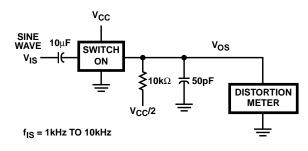


FIGURE 5. SINE WAVE DISTORTION TEST CIRCUIT

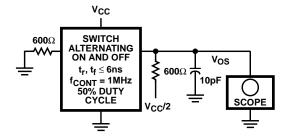


FIGURE 6. CONTROL-TO-SWITCH FEEDTHROUGH NOISE TEST CIRCUIT

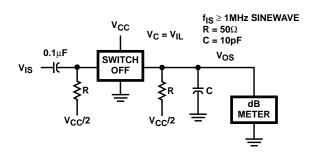


FIGURE 7. SWITCH OFF SIGNAL FEEDTHROUGH TEST CIRCUIT

Test Circuits and Waveforms

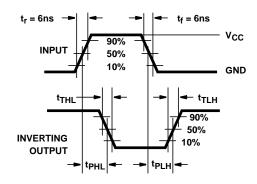


FIGURE 8. HC TRANSITION TIMES AND PROPAGATION DELAY TIMES, COMBINATION LOGIC

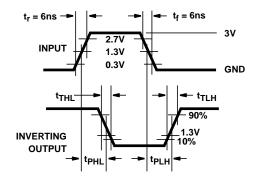


FIGURE 9. HCT TRANSITION TIMES AND PROPAGATION DELAY TIMES, COMBINATION LOGIC

PACKAGE OPTION ADDENDUM

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	e Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
CD74HC4067DB	PREVIEW	SSOP	DB	24	60	TBD	Call TI	Call TI
CD74HC4067E	ACTIVE	PDIP	N	24	15	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type
CD74HC4067EE4	ACTIVE	PDIP	N	24	15	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type
CD74HC4067M	ACTIVE	SOIC	DW	24	25	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
CD74HC4067M96	ACTIVE	SOIC	DW	24	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
CD74HC4067M96E4	ACTIVE	SOIC	DW	24	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
CD74HC4067M96G4	ACTIVE	SOIC	DW	24	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
CD74HC4067ME4	ACTIVE	SOIC	DW	24	25	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
CD74HC4067MG4	ACTIVE	SOIC	DW	24	25	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
CD74HC4067SM	PREVIEW	SSOP	DB	24	60	Green (RoHS & no Sb/Br)	CU NIPD	Level-1-260C-UNLIM
CD74HC4067SM96	ACTIVE	SSOP	DB	24	2000	Green (RoHS & no Sb/Br)	CU NIPD	Level-1-260C-UNLIM
CD74HC4067SM96E4	ACTIVE	SSOP	DB	24	2000	Green (RoHS & no Sb/Br)	CU NIPD	Level-1-260C-UNLIM
CD74HC4067SM96G4	ACTIVE	SSOP	DB	24	2000	Green (RoHS & no Sb/Br)	CU NIPD	Level-1-260C-UNLIM
CD74HCT4067M	ACTIVE	SOIC	DW	24	25	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
CD74HCT4067ME4	ACTIVE	SOIC	DW	24	25	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
CD74HCT4067MG4	ACTIVE	SOIC	DW	24	25	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

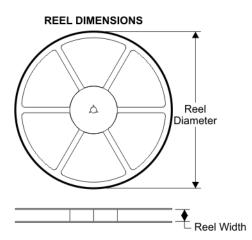
⁽³⁾ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder

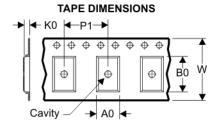
PACKAGE OPTION ADDENDUM

28-May-2007

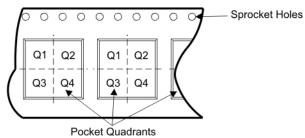
temperature.

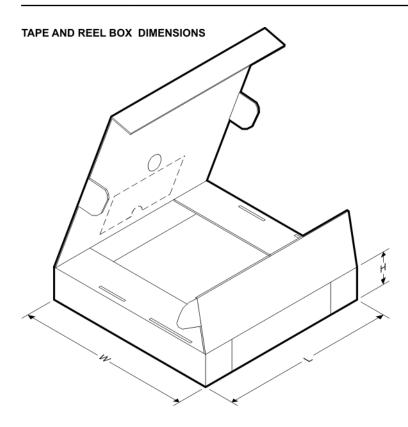
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.



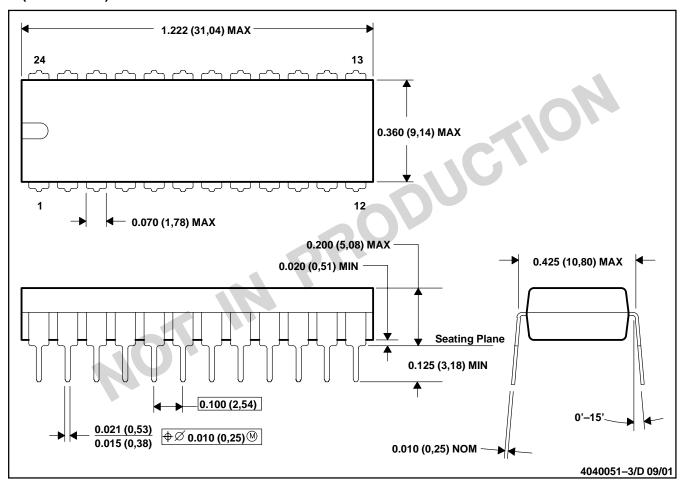
4-Oct-2007


TAPE AND REEL BOX INFORMATION


	Dimension designed to accommodate the component width
	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

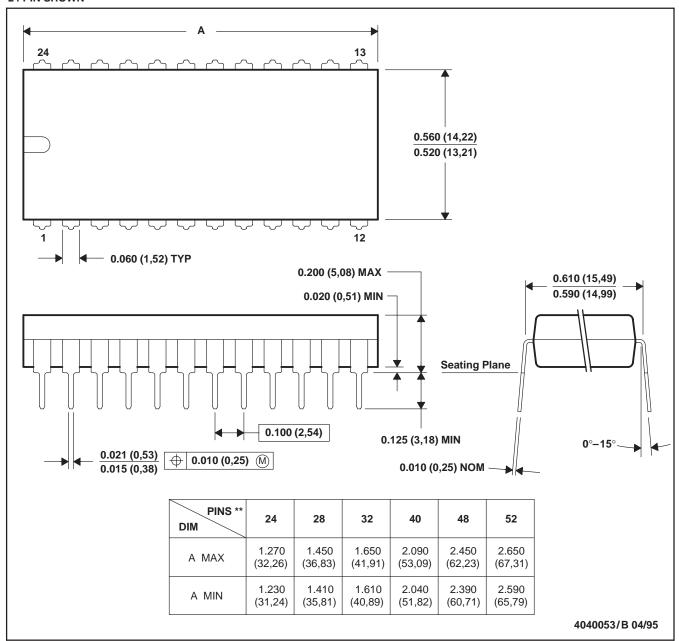
Device	Package	Pins	Site	Reel Diameter (mm)	Reel Width (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
CD74HC4067M96	DW	24	SITE 60	330	24	10.75	15.7	2.7	12	24	Q1
CD74HC4067SM96	DB	24	SITE 41	330	16	8.2	8.8	2.5	12	16	Q1



Device	Package	Pins	Site	Length (mm)	Width (mm)	Height (mm)
CD74HC4067M96	DW	24	SITE 60	346.0	346.0	41.0
CD74HC4067SM96	DB	24	SITE 41	346.0	346.0	33.0

N (R-PDIP-T24)

PLASTIC DUAL-IN-LINE

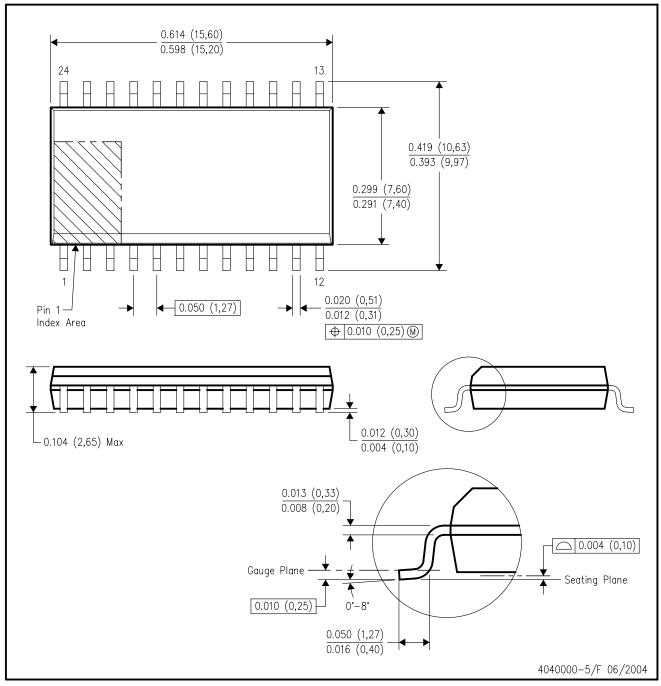

NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- C. Falls within JEDEC MS-010

N (R-PDIP-T**)

PLASTIC DUAL-IN-LINE PACKAGE

24 PIN SHOWN

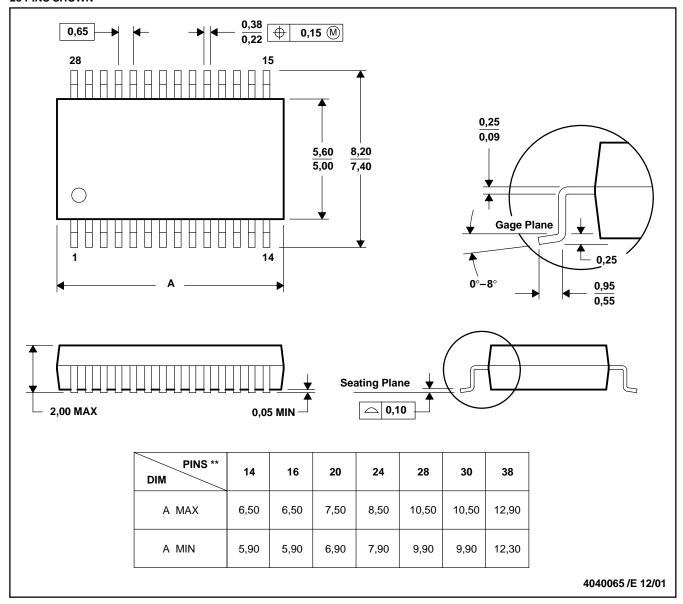

NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- C. Falls within JEDEC MS-011
- D. Falls within JEDEC MS-015 (32 pin only)

DW (R-PDSO-G24)

PLASTIC SMALL-OUTLINE PACKAGE

NOTES:


- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).
- D. Falls within JEDEC MS-013 variation AD.

DB (R-PDSO-G**)

PLASTIC SMALL-OUTLINE

28 PINS SHOWN

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.

D. Falls within JEDEC MO-150

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
RFID	www.ti-rfid.com	Telephony	www.ti.com/telephony
Low Power Wireless	www.ti.com/lpw	Video & Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2007, Texas Instruments Incorporated