Project

General

Profile

Revision 336

Updated wireless to use a circular buffer instead of a queue using malloc. Tested on both the computer and robots with a token ring, and was successful.

View differences:

move.c
1
/**
2
 * Copyright (c) 2007 Colony Project
3
 *
4
 * Permission is hereby granted, free of charge, to any person
5
 * obtaining a copy of this software and associated documentation
6
 * files (the "Software"), to deal in the Software without
7
 * restriction, including without limitation the rights to use,
8
 * copy, modify, merge, publish, distribute, sublicense, and/or sell
9
 * copies of the Software, and to permit persons to whom the
10
 * Software is furnished to do so, subject to the following
11
 * conditions:
12
 *
13
 * The above copyright notice and this permission notice shall be
14
 * included in all copies or substantial portions of the Software.
15
 *
16
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
17
 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
18
 * OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
19
 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
20
 * HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
21
 * WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
22
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
23
 * OTHER DEALINGS IN THE SOFTWARE.
24
 **/
25

  
26

  
27
/**
28
 * @file move.c
29
 * @brief Functions for moving
30
 *
31
 * Implementation of functions for moving the robot.
32
 *
33
 * @author Colony Project, CMU Robotics Club
34
 **/
35

  
36
#include "dragonfly_lib.h"
37

  
38
#include "move.h"
39
#include "rangefinder.h"
40

  
41

  
42
// Internal prototypes
43
void translateAngulartoLinear (int velocity, int omega, int* vl, int* vr);
44

  
45
// global varaibles for move_avoid
46
int d1, d2, d3, d4, d5; /**
47
 * @defgroup move Movement
48
 * @brief Functions fo controlling robot motion
49
 * Higher level functions to control the movement of robots.
50
 *
51
 * @{
52
 **/
53

  
54

  
55
/**
56
 * Causes the robot to move with the given translation and rotational velocities.
57
 * motors_init must be called before this function can be used.
58
 *
59
 * @param velocity the translational velocity of the robot, in the range -255 to 255.
60
 * A positive value indicates forward motion, while a negative value indicates
61
 * backwards motion.
62
 *
63
 * @param omega the rotational velocity of the robot, in the range -255 to 255.
64
 * A positive value indicates a counterclockwise velocity, while a negative
65
 * value indicates a clockwise velocity.
66
 *
67
 * @see motors_init, motor1_set, motor2_set
68
 **/
69
void move (int velocity, int omega) {
70
  int vl = 0;
71
  int vr = 0;
72
  translateAngulartoLinear(velocity, omega, &vl , &vr );
73
  //
74

  
75
  if (vl < 0) {
76
    motor1_set(BACKWARD, -vl);
77
  } else {
78
    motor1_set(FORWARD, vl);
79
  }
80
  if (vr < 0) {
81
    motor2_set(BACKWARD, -vr);
82
  } else {
83
    motor2_set(FORWARD, vr);
84
  }
85
}
86

  
87

  
88
/**
89
 * Moves the robot with the given translational and angular velocities
90
 * while avoiding obstacles. To be effective, this function must be
91
 * called repeatedly throughout the motion. It relies on the IR
92
 * rangefinders to detect obstacles. Before calling this function,
93
 * motors_init and range_init must be called.
94
 *
95
 * @param velocity the translational velocity of the robot, in the
96
 * range -255 to 255. A positive value indicates forward motion.
97
 *
98
 * @param omega the rotational velocity of the robot, in the range
99
 * -255 to 255. A positive value indicates a counterclockwise velocity.
100
 *
101
 * @param strength the strength of the avoid behavior, in the range
102
 * 0 to 100.
103
 *
104
 * @see motors_init, range_init, move
105
 **/
106
void move_avoid(int velocity, int omega, int strength){
107
  int pControl;
108
  int vl = 0;
109
  int vr = 0;
110
  int temp;
111

  
112
  temp=range_read_distance(IR1);
113
  d1 = (temp == -1) ? d1 : temp;
114

  
115
  temp=range_read_distance(IR2);
116
  d2=(temp == -1) ? d2 : temp;
117

  
118
  temp=range_read_distance(IR3);
119
  d3=(temp == -1) ? d3 : temp;
120

  
121
  temp=range_read_distance(IR4);
122
  d4=(temp == -1) ? d4 : temp;
123

  
124
  temp=range_read_distance(IR5);
125
  d5=(temp == -1) ? d5 : temp;
126

  
127
  /* Avoid obstacles ahead
128
  if(d2>170)
129
    v*=-1;
130

  
131
  Naturally slow down if there is something in the way.
132
  if(d2>150 || d1>180 || d3>180){
133
    v>>=1;
134
  */
135

  
136
  //pControl= (((d3-d1) + (d4-d5))*strength)/100;
137
  pControl= (((d5-d4))*strength)/100;
138
  omega = (omega*(100-strength))/100 + pControl;
139
  translateAngulartoLinear(velocity, omega, &vl , &vr );
140

  
141
  if (vl < 0) {
142
    motor1_set(BACKWARD, -vl);
143
  } else {
144
    motor1_set(FORWARD, vl);
145
  }
146
  if (vr < 0) {
147
    motor2_set(BACKWARD, -vr);
148
  } else {
149
    motor2_set(FORWARD, vr);
150
  }
151
}
152

  
153
/**@}**///end the motion group
154

  
155
void translateAngulartoLinear (int velocity, int omega, int* vl, int* vr) {
156
	//omega: angle measure, positive couter-clockwise from front.
157
	// -180 <= omega <= 180
158
	//velocity: -255 <= velocity <= 255
159

  
160
  long int vltemp, vrtemp;
161

  
162
  //make sure values are in bounds
163
  if (velocity < -255 || velocity >255 || omega < -255 || omega > 255) return;
164

  
165
  //compute
166
	vrtemp = velocity + omega * 3;
167
	vltemp = velocity - omega * 3;
168

  
169
	//check to see if max linear velocities have been exceeded.
170
  if (vrtemp > 255) {
171
    vltemp = 255 * vltemp / vrtemp;
172
    vrtemp = 255;
173
  }
174
  if (vltemp > 255) {
175
	vrtemp = 255 * vrtemp / vltemp;
176
	vltemp = 255;
177
  }
178
  if (vrtemp < -255) {
179
    vltemp = -255 * vltemp / vrtemp;
180
    vrtemp = -255;
181
  }
182
  if (vltemp < -255) {
183
    vrtemp = -255 * vrtemp / vltemp;
184
    vltemp = -255;
185
  }
186

  
187
  *vr = (int)vrtemp;
188
  *vl = (int)vltemp;
189

  
190

  
191
}
192

  
193

  
1
/**
2
 * Copyright (c) 2007 Colony Project
3
 * 
4
 * Permission is hereby granted, free of charge, to any person
5
 * obtaining a copy of this software and associated documentation
6
 * files (the "Software"), to deal in the Software without
7
 * restriction, including without limitation the rights to use,
8
 * copy, modify, merge, publish, distribute, sublicense, and/or sell
9
 * copies of the Software, and to permit persons to whom the
10
 * Software is furnished to do so, subject to the following
11
 * conditions:
12
 * 
13
 * The above copyright notice and this permission notice shall be
14
 * included in all copies or substantial portions of the Software.
15
 * 
16
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
17
 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
18
 * OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
19
 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
20
 * HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
21
 * WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
22
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
23
 * OTHER DEALINGS IN THE SOFTWARE.
24
 **/
25

  
26

  
27
/**
28
 * @file move.c
29
 * @brief Functions for moving
30
 *
31
 * Implementation of functions for moving the robot.
32
 *
33
 * @author Colony Project, CMU Robotics Club
34
 **/
35

  
36
#include "dragonfly_lib.h"
37

  
38
#include "move.h"
39
#include "rangefinder.h"
40

  
41

  
42
// Internal prototypes
43
void translateAngulartoLinear (int velocity, int omega, int* vl, int* vr);
44

  
45
// global varaibles for move_avoid
46
int d1, d2, d3, d4, d5; /**
47
 * @defgroup move Movement
48
 * @brief Functions fo controlling robot motion
49
 * Higher level functions to control the movement of robots.
50
 * 
51
 * @{
52
 **/
53

  
54

  
55
/**
56
 * Causes the robot to move with the given translation and rotational velocities.
57
 * motors_init must be called before this function can be used.
58
 *
59
 * @param velocity the translational velocity of the robot, in the range -255 to 255.
60
 * A positive value indicates forward motion, while a negative value indicates
61
 * backwards motion.
62
 * 
63
 * @param omega the rotational velocity of the robot, in the range -255 to 255.
64
 * A positive value indicates a counterclockwise velocity, while a negative
65
 * value indicates a clockwise velocity.
66
 *
67
 * @see motors_init, motor1_set, motor2_set
68
 **/
69
void move (int velocity, int omega) {
70
  int vl = 0;
71
  int vr = 0;
72
  translateAngulartoLinear(velocity, omega, &vl , &vr );
73
  //
74
  
75
  if (vl < 0) {
76
    motor1_set(BACKWARD, -vl);
77
  } else {
78
    motor1_set(FORWARD, vl);
79
  }
80
  if (vr < 0) {
81
    motor2_set(BACKWARD, -vr);
82
  } else {
83
    motor2_set(FORWARD, vr);
84
  }
85
}
86

  
87

  
88
/**
89
 * Moves the robot with the given translational and angular velocities
90
 * while avoiding obstacles. To be effective, this function must be
91
 * called repeatedly throughout the motion. It relies on the IR
92
 * rangefinders to detect obstacles. Before calling this function,
93
 * motors_init and range_init must be called.
94
 *
95
 * @param velocity the translational velocity of the robot, in the
96
 * range -255 to 255. A positive value indicates forward motion.
97
 *
98
 * @param omega the rotational velocity of the robot, in the range
99
 * -255 to 255. A positive value indicates a counterclockwise velocity.
100
 *
101
 * @param strength the strength of the avoid behavior, in the range
102
 * 0 to 100.
103
 *
104
 * @see motors_init, range_init, move
105
 **/
106
void move_avoid(int velocity, int omega, int strength){
107
  int pControl;
108
  int vl = 0;
109
  int vr = 0;
110
  int temp;
111
  
112
  temp=range_read_distance(IR1);
113
  d1 = (temp == -1) ? d1 : temp;
114
  
115
  temp=range_read_distance(IR2);
116
  d2=(temp == -1) ? d2 : temp;
117
  
118
  temp=range_read_distance(IR3);
119
  d3=(temp == -1) ? d3 : temp;
120
  
121
  temp=range_read_distance(IR4);
122
  d4=(temp == -1) ? d4 : temp;
123
  
124
  temp=range_read_distance(IR5);
125
  d5=(temp == -1) ? d5 : temp;
126
  
127
  /* Avoid obstacles ahead
128
  if(d2>170)
129
    v*=-1;
130
    
131
  Naturally slow down if there is something in the way.
132
  if(d2>150 || d1>180 || d3>180){
133
    v>>=1;
134
  */
135
  
136
  //pControl= (((d3-d1) + (d4-d5))*strength)/100;
137
  pControl= (((d5-d4))*strength)/100;
138
  omega = (omega*(100-strength))/100 + pControl;
139
  translateAngulartoLinear(velocity, omega, &vl , &vr );
140
  
141
  if (vl < 0) {
142
    motor1_set(BACKWARD, -vl);
143
  } else {
144
    motor1_set(FORWARD, vl);
145
  }
146
  if (vr < 0) {
147
    motor2_set(BACKWARD, -vr);
148
  } else {
149
    motor2_set(FORWARD, vr);
150
  }
151
}
152

  
153
/**@}**///end the motion group
154

  
155
void translateAngulartoLinear (int velocity, int omega, int* vl, int* vr) {
156
	//omega: angle measure, positive couter-clockwise from front.
157
	// -180 <= omega <= 180
158
	//velocity: -255 <= velocity <= 255
159
  
160
  long int vltemp, vrtemp;
161
  
162
  //make sure values are in bounds
163
  if (velocity < -255 || velocity >255 || omega < -255 || omega > 255) return;
164
	
165
  //compute
166
	vrtemp = velocity + omega * 3;
167
	vltemp = velocity - omega * 3;
168
	
169
	//check to see if max linear velocities have been exceeded.
170
  if (vrtemp > 255) {
171
    vltemp = 255 * vltemp / vrtemp;
172
    vrtemp = 255;
173
  }
174
  if (vltemp > 255) {	   
175
	vrtemp = 255 * vrtemp / vltemp;    
176
	vltemp = 255;  
177
  }
178
  if (vrtemp < -255) {
179
    vltemp = -255 * vltemp / vrtemp;
180
    vrtemp = -255;
181
  }
182
  if (vltemp < -255) {
183
    vrtemp = -255 * vrtemp / vltemp;
184
    vltemp = -255;
185
  }
186
  
187
  *vr = (int)vrtemp;
188
  *vl = (int)vltemp;
189
	
190

  
191
}
192

  
193

  

Also available in: Unified diff