Project

General

Profile

Statistics
| Revision:

root / branches / analog / trunk / code / projects / libdragonfly / analog.c @ 312

History | View | Annotate | Download (7.15 KB)

1
/**
2
 * Copyright (c) 2007 Colony Project
3
 * 
4
 * Permission is hereby granted, free of charge, to any person
5
 * obtaining a copy of this software and associated documentation
6
 * files (the "Software"), to deal in the Software without
7
 * restriction, including without limitation the rights to use,
8
 * copy, modify, merge, publish, distribute, sublicense, and/or sell
9
 * copies of the Software, and to permit persons to whom the
10
 * Software is furnished to do so, subject to the following
11
 * conditions:
12
 * 
13
 * The above copyright notice and this permission notice shall be
14
 * included in all copies or substantial portions of the Software.
15
 * 
16
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
17
 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
18
 * OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
19
 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
20
 * HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
21
 * WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
22
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
23
 * OTHER DEALINGS IN THE SOFTWARE.
24
 **/
25

    
26
/**
27
 * @file analog.c
28
 * @brief Analog input and output
29
 *
30
 * Contains functions for manipulating the ADC on the Dragonfly board.
31
 * 
32
 * @author Colony Project, CMU Robotics Club
33
 * code mostly taken from fwr analog file (author: Tom Lauwers)
34
 **/
35

    
36
#include <util/delay.h>
37
#include <avr/interrupt.h>
38
#include "analog.h"
39
#include "serial.h"
40
// Internal Function Prototypes
41
void set_adc_mux(int which);
42

    
43
/**
44
 * @defgroup analog Analog
45
 * Functions for manipulation the ADC on the dragonfly board.
46
 * All definitions may be found in analog.h.
47
 *
48
 * @{
49
 **/
50

    
51
int adc_loop_running = 0;
52
int adc_current_port = 0;
53
adc_t an_val[10];
54

    
55
/**
56
 * Initializes the ADC.
57
 * Call analog_init before reading from the analog ports.
58
 *
59
 * @see analog8, analog10
60
 **/
61
void analog_init(int start_conversion)
62
{
63
        for (int i = 0; i < 10; i++) {
64
                an_val[i].adc10 = 0;
65
                an_val[i].adc8 = 0;
66
        }
67

    
68
        //cli();
69
        // ADMUX register
70
        // Bit 7,6 - Set voltage reference to AVcc (0b01)
71
        // Bit 5 - ADLAR set to simplify moving from register
72
        // Bit 4 - X
73
        // Bit 3:0 - Sets the current channel
74
        // Initializes to read from AN1 first (AN0 is reservered for the BOM)
75
        ADMUX = 0;
76
        ADMUX |= ADMUX_OPT | _BV(MUX0);
77

    
78

    
79
        // ADC Status Register A
80
        // Bit 7 - ADEN is set (enables analog)
81
        // Bit 6 - Start conversion bit is set (must be done once for free-running mode)
82
        // Bit 5 - Enable Auto Trigger (for free running mode) NOT DOING THIS RIGHT NOW
83
        // Bit 4 - ADC interrupt flag, 0
84
        // Bit 3 - Enable ADC Interrupt (required to run free-running mode)
85
        // Bits 2-0 - Set to create a clock divisor of 128, to make ADC clock = 8,000,000/64 = 125kHz
86
        ADCSRA = 0;
87
        ADCSRA |= _BV(ADEN) | _BV(ADIE) | _BV(ADPS2) | _BV(ADPS1) | _BV(ADPS0);
88
        
89
        // Set external mux lines to outputs
90
        DDRG |= 0x1C;
91
        
92
        // Set up first port for conversions
93
        set_adc_mux(0x00);
94
        adc_current_port = AN1;
95

    
96
        //Start the conversion if requested
97
        if (start_conversion)
98
                analog_start_loop();
99
        else
100
                analog_stop_loop();
101
        //sei();
102
        
103
}        
104

    
105
unsigned int analog_get8(int which) {
106
        if (which == BOM_PORT) {
107
                return 0;
108
        } else {
109
                return an_val[which - 1].adc8;
110
        }
111
}
112

    
113
unsigned int analog_get10(int which) {
114
        if (which == BOM_PORT) {
115
                return 0;
116
        } else {
117
                return an_val[which - 1].adc10;
118
        }
119
}
120

    
121
void analog_start_loop(void) {
122
        //Start the conversion
123
        ADCSRA |= _BV(ADSC);
124
        adc_loop_running = 0x1;
125
}
126

    
127
//will stop after current conversion finishes
128
void analog_stop_loop(void) {
129
        //Stop the conversion
130
        adc_loop_running = 0x0;
131
}
132
/**
133
 * Reads an eight bit number from an analog port.
134
 * analog_init must be called before using this function.
135
 * 
136
 * @param which the analog port to read from. One of
137
 * the constants AN0 - AN7.
138
 *
139
 * @return the eight bit input to the specified port
140
 *
141
 * @see analog_init, analog10
142
 **/
143
unsigned int analog8(int which)
144
{        
145
        // Let any previous conversion finish
146
        while (ADCSRA & _BV(ADSC));
147
        
148
        if(which < EXT_MUX) {
149
                ADMUX = ADMUX_OPT + which;
150
        } else {
151
                ADMUX = ADMUX_OPT + EXT_MUX;
152
                set_adc_mux(which - 8);
153
        }
154
        
155
        // Start the conversion
156
        ADCSRA |= _BV(ADSC);
157

    
158
        // Wait for the conversion to finish
159
        while (ADCSRA & _BV(ADSC));
160

    
161
        return ADCH; //since we left aligned the data, ADCH is the 8 MSB.
162
}
163

    
164
/**
165
 * Reads a ten bit number from the specified port.
166
 * analog_init must be called before using this function.
167
 *
168
 * @param which the analog port to read from. Typically
169
 * a constant, one of AN0 - AN7.
170
 *
171
 * @return the ten bit number input to the specified port
172
 * 
173
 * @see analog_init, analog8
174
 **/
175
unsigned int analog10(int which)
176
{
177
        // Let any previous conversion finish
178
        while (ADCSRA & _BV(ADSC));
179

    
180
        if(which < EXT_MUX) {
181
                ADMUX = ADMUX_OPT + which;
182
        } else {
183
                ADMUX = ADMUX_OPT + EXT_MUX;
184
                set_adc_mux(which - 8);
185
        }
186
        
187
        // Start the conversion
188
        ADCSRA |= _BV(ADSC);
189

    
190
        // Wait for the conversion to finish
191
        while (ADCSRA & _BV(ADSC));
192

    
193
        return ((ADCH << 2) | (ADCL >> 6));
194
}
195

    
196
/**
197
 * Returns the current position of the wheel, as an integer
198
 * in the range 0 - 255.
199
 * analog_init must be called before using this function.
200
 *
201
 * @return the orientation of the wheel, as an integer in
202
 * the range 0 - 255.
203
 *
204
 * @see analog_init
205
 **/
206
int wheel(void)
207
{
208
        return analog_get8(WHEEL_PORT);
209
}
210

    
211
/**@}**/ //end defgroup
212

    
213
void set_adc_mux(int which)
214
{
215
  // FIX THIS IN NEXT REVISION
216
  // ADDR2 ADDR1 ADDR0
217
  // G2.G4.G3 set mux to port 0-7 via binary selection
218
  // math would be much cleaner if it was G4.G3.G2
219
  
220
  // mask so only proper bits are possible.  
221
  PORTG = (PORTG & 0xE3) | ((which & 0x03) << 3) | (which & 0x04);
222
}
223

    
224
ISR(ADC_vect) {
225
        static volatile int adc_prev_loop_running = 0;
226

    
227
        int adc_h = 0;
228
        int adc_l = 0;
229

    
230
        //usb_putc('p');
231
        //usb_puti(adc_current_port);
232
        //usb_putc('r');
233
        //usb_puti(adc_loop_running);
234
        //usb_puts("\n\r");
235

    
236
        //Store the value only if this read isn't for the BOM
237
        if (ADMUX != BOM_PORT) {
238
                adc_l = ADCL;
239
                adc_h = ADCH;
240
        
241
                an_val[adc_current_port - 1].adc10 = (adc_h << 2) | (adc_l >> 6);
242
                an_val[adc_current_port - 1].adc8 = adc_h;
243
                //usb_puti(an_val[adc_current_port - 1].adc10);
244
                //usb_puts("\n\r");
245
                //usb_puti(an_val[adc_current_port - 1].adc8);
246
                //usb_puti(ADCH);
247
                //usb_puts("\n\r");
248
        }
249
        
250
        //Save the result only if we just turned off the loop
251
        if (!adc_loop_running && !adc_prev_loop_running)
252
                return;
253
        
254
        adc_prev_loop_running = adc_loop_running;
255
        
256
        //Skip AN7 because it is not a real port
257
        if (adc_current_port == AN6) {
258
                ADMUX = ADMUX_OPT | EXT_MUX;
259
                set_adc_mux(AN8 - 8);
260
                adc_current_port = AN8;
261
        //Wrap around
262
        } else if (adc_current_port == AN11) {
263
                adc_current_port = AN1;
264
                ADMUX = ADMUX_OPT | adc_current_port;
265
        //Normal increment
266
        } else {
267
                adc_current_port++;
268
        
269
                if(adc_current_port < EXT_MUX) {
270
                        ADMUX = ADMUX_OPT | adc_current_port;
271
                } else {
272
                        ADMUX = ADMUX_OPT | EXT_MUX;
273
                        set_adc_mux(adc_current_port - 8);
274
                }
275
        }
276

    
277
        //Initiate next conversion only if we are running a loop
278
        if (!adc_loop_running)
279
                return;
280

    
281
        ADCSRA |= _BV(ADSC);
282
        
283
        //if (ADCSRA & _BV(ADSC))
284
        //        usb_putc('s');
285
                
286
        return;
287
}
288