Project

General

Profile

Statistics
| Revision:

root / trunk / code / projects / libdragonfly / bom.c @ 1536

History | View | Annotate | Download (17 KB)

1
/**
2
 * Copyright (c) 2007 Colony Project
3
 * 
4
 * Permission is hereby granted, free of charge, to any person
5
 * obtaining a copy of this software and associated documentation
6
 * files (the "Software"), to deal in the Software without
7
 * restriction, including without limitation the rights to use,
8
 * copy, modify, merge, publish, distribute, sublicense, and/or sell
9
 * copies of the Software, and to permit persons to whom the
10
 * Software is furnished to do so, subject to the following
11
 * conditions:
12
 * 
13
 * The above copyright notice and this permission notice shall be
14
 * included in all copies or substantial portions of the Software.
15
 * 
16
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
17
 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
18
 * OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
19
 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
20
 * HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
21
 * WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
22
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
23
 * OTHER DEALINGS IN THE SOFTWARE.
24
 **/
25

    
26

    
27
/**
28
 * @file bom.c
29
 * @brief Implementation for using the BOM
30
 *
31
 * Contains functions for using the Bearing and Orientation Module (BOM)
32
 *
33
 * @author Colony Project, CMU Robotics Club
34
 **/
35

    
36
#include "bom.h"
37
#include "dio.h"
38
#include "serial.h"
39
#include "analog.h"
40

    
41
//On the original BOM1.0, the emmitter angular order does not match the analog mux order
42
//so you need to iterate through the mux index in the following order if you want to get
43
//the detector readings in order:
44
static const char lookup[16] = {7,6,5,0xe,1,4,3,2,0xf,0,0xd,8,0xc,0xb,9,0xa};
45

    
46

    
47
/* *****************************
48
 * BOM Vector Component Tables *
49
 **************************** **/
50

    
51
/*
52
 * The x component of each BOM detector (indexed from 0 to 15)
53
 * was calculated using the following formula:
54
 *
55
 *                x_comp[i] = fix(25 * cos ( 2 * pi / 16 * i) )
56
 *
57
 * where "fix" rounds towards 0. If the BOM detectors were superimposed
58
 * onto a 2 dimensional Cartesian space, this effectively calculates the
59
 * x component of the emitter vector where emitter 0 corresponds to an
60
 * angle of 0 radians, 4 -> pi/2, 8 -> pi, ect.
61
 */
62
static const signed int x_comp[16] = {
63
        25,
64
        23,
65
        17,
66
        9,
67
        0,
68
        -9,
69
        -17,
70
        -23,
71
        -25,
72
        -23,
73
        -17,
74
        -9,
75
        0,
76
        9,
77
        17,
78
        23
79
};
80

    
81

    
82
/*
83
 * The y component of each BOM detector (indexed from 0 to 15)
84
 * was calculated using the following formula:
85
 *
86
 *                y_comp[i] = fix(25 * sin ( 2 * pi / 16 * i) )
87
 *
88
 * where "fix" rounds towards 0. If the BOM detectors were superimposed
89
 * onto a 2 dimensional Cartesian space, this effectively calculates the
90
 * x component of the emitter vector where emitter 0 corresponds to an
91
 * angle of 0 radians, 4 -> pi/2, 8 -> pi, ect.
92
 */
93
static signed int y_comp[16] = {
94
        0,
95
        9,
96
        17,
97
        23,
98
        25,
99
        23,
100
        17,
101
        9,
102
        0,
103
        -9,
104
        -17,
105
        -23,
106
        -25,
107
        -23,
108
        -17,
109
        -9
110
};
111

    
112
// internal function prototypes
113
static void bom_select(char which);
114

    
115
/*
116
 Bk R Y (Analog)
117
---------
118
 Green
119
 Blue
120
 White
121
---------
122
 Blue
123
 White
124
*/
125

    
126

    
127
/*
128
the analog pin definitions from dio.h DO NOT work here,
129
so we must use PF0 from avrgcc (as opposed to _PIN_F0).
130
BUT the dio pin definitions from dio.h must be used (no PE...).
131

132
also, _PIN_E2 is initialized to high for some reason,
133
which turns the BOM on when the robot is turned on.
134
WORK-AROUND: call digital_output(_PIN_E2,0) at some point.
135

136
*/
137

    
138
#define MONKI PF0         //analog (yellow)
139
//------------------------//
140
#define MONKL _PIN_E2     //green
141
#define MONK1 _PIN_E3     //blue
142
#define MONK0 _PIN_E4     //white
143
//------------------------//
144
#define MONK3 _PIN_E6     //blue
145
#define MONK2 _PIN_E7     //white
146

    
147
#define BOM_VALUE_THRESHOLD 150 //200
148
#define NUM_BOM_LEDS 16
149

    
150
/*
151
  *The following pin definitions are for the BOM v1.5
152
  */
153

    
154
#define BOM_MODE        _PIN_E2        //dio0
155
#define BOM_STROBE        _PIN_E3        //dio1
156

    
157
#define BOM_DATA        _PIN_A0 //servo0
158
#define BOM_CLOCK        _PIN_A1        //servo1
159

    
160
#define BOM_S0                _PIN_E5        //dio3
161
#define BOM_S1                _PIN_E4        //dio2
162
#define BOM_S2                _PIN_E7        //dio4
163
#define BOM_S3                _PIN_E6        //dio5
164
#define BOM_OUT                PF0                //analog(yellow)
165

    
166
/**
167
 * @defgroup bom BOM (Bearing and Orientation Module)
168
 * @brief Functions for dealing with the BOM.
169
 *
170
 * The Bearing and Orientation Module / Barrel of Monkeys / BOM
171
 * is a custom sensor designed and built by the Colony Project.
172
 * It consists of a ring of 16 IR emitters and 16 IR detectors.
173
 * The BOM is most often use to determine the direction of other
174
 * robots. This module contains functions for controlling the BOM.
175
 *
176
 * Include bom.h to access these functions.
177
 *
178
 * @{
179
 **/
180

    
181
static unsigned int bom_val[NUM_BOM_LEDS];
182
static volatile char bom_type = BOM10;
183
static int select_pins[4];
184
static int analog_pin;
185

    
186
/**
187
 * Initializes the BOM.
188
 * Call bom_init before reading bom values or turning bom leds.
189
 *
190
 * @bugs INCOMPLETE - No utilization of BOM1.5 RSSI capability. Probably leave this out
191
 * until Cornell and Pras return
192
 * 
193
 * @see bom_refresh, bom_leds_on, bom_leds_off
194
 **/
195
void bom_init(char type) {
196
    bom_type = type;
197
    
198
    switch(bom_type) {
199
    case BOM10:
200
                select_pins[0] = MONK0; 
201
                select_pins[1] = MONK1;
202
                select_pins[2] = MONK2;
203
                select_pins[3] = MONK3;
204
                analog_pin = MONKI;
205
        break;
206
    case BOM15:
207
        //Sets BOM1.5 to normal [BOM] mode
208
        digital_output(BOM_MODE, 0);
209
                select_pins[0] = BOM_S0; 
210
                select_pins[1] = BOM_S1;
211
                select_pins[2] = BOM_S2;
212
                select_pins[3] = BOM_S3;
213
                bom_set_leds(BOM_ALL);
214
                analog_pin = BOM_OUT;
215
        break;
216
    case RBOM:
217
        break;
218
    //default:
219
    }
220
}
221

    
222
/**
223
 * Iterates through each bit in the bit_field. For each set bit, sets the corresponding bom select bits
224
 *    and updates the corresponding bom value with an analog_get8 reading.  analog_init and bom_init
225
 *    must be called for this to work. Must call this before reading BOM values!
226
 *
227
 *
228
 * @param bit_field specifies which elements in bom_val[] should be updated. Use BOM_ALL to refresh all values.
229
 *    Ex. if 0x0003 is passed, bom_val[0] and bom_val[1] will be updated.
230
 *
231
 * @see bom_get
232
 **/
233
void bom_refresh(int bit_field) {
234
    int i;
235
        int loop_was_running = 0;
236
    
237
        //Check analog loop status
238
    if(analog_loop_status() == ADC_LOOP_RUNNING) {
239
                loop_was_running = 1;
240
                analog_stop_loop();
241
        }
242
    
243
        //Read BOM values
244
    for(i = 0; i < NUM_BOM_LEDS; i++) {
245
        if(bit_field & 0x1) {
246
            bom_select(i);
247
            bom_val[i] = analog_get8(analog_pin);
248
        }
249
        bit_field = bit_field >> 1;
250
    }
251
    
252
        //Restore analog loop status
253
        if(loop_was_running)
254
                analog_start_loop();
255
}
256

    
257
/**
258
 * Gets the bom reading from bom_val[which].  Call bom_refresh beforehand to read new bom values.
259
 *
260
 * @pre must call bom refresh first
261
 *
262
 * @param which which bom value to return
263
 *
264
 * @return the bom value
265
 *
266
 * see bom_refresh
267
 **/
268
int bom_get(int which) {
269
    return bom_val[which];
270
}
271

    
272
/** 
273
 * Compares all the values in bom_val[] and returns the index to the lowest (max) value element.
274
 *
275
 * @pre must call bom refresh
276
 * @return index to the lowest (max) bom value element.  -1 if no value is lower than
277
 *    BOM_VALUE_THRESHOLD
278
 **/
279
int bom_get_max(void) {
280
    int i, lowest_val, lowest_i;
281
    lowest_i = -1;
282
    lowest_val = 255;
283
    for(i = 0; i < NUM_BOM_LEDS; i++) {
284
        if(bom_val[i] < lowest_val) {
285
            lowest_val = bom_val[i];
286
            lowest_i = i;
287
        }
288
    }
289
    
290
    if(lowest_val < BOM_VALUE_THRESHOLD)
291
        return lowest_i;
292
    else
293
        return -1;
294
}
295

    
296
/** 
297
 * Compute the net resultant BOM IR vector by scaling each IR unit vector by its intensity
298
 *                and summing over all IR LEDs.
299
 *
300
 * @param v  Pointer to Vector struct to be filled by this function with an x and y net vector
301
 *                component.
302
 *
303
 * @param usrBOMvals  Pointer to array which holds 16 raw BOM readings which can be used if user
304
 *                has already collected BOM information instead of collecting a new data set from the BOM.
305
 *
306
 * @return  Exit status - Zero for success; negative on error.
307
 **/
308
int bom_get_vector(Vector* v, int* usrBOMvals) {
309

    
310
        /* Store current BOM readings and use them as a weighting factor */
311
        int intensity[16] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
312

    
313
        /* Arrays for storing the weighted x ("Rightness") and y ("Forwardness")
314
         * components. Calculated by multiplying the intensity by the x and y
315
         * component respectively (x and y components are stored in the tables
316
         * above). */
317
        int weighted_x_comp[16] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
318
        int weighted_y_comp[16] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
319
        
320
        /* Accumulators to sum up the net x ("Rightness") and y ("Forwardness")
321
         * components for the entire robot. */
322
        long net_x_comp = 0;
323
        long net_y_comp = 0;
324

    
325
        int i = 0;
326

    
327
        /* BOM intensity is actually measured as more intense = closer to 0 */
328
        if (usrBOMvals) {
329
                /* Use BOM values collected by user */
330
                for (i = 0; i < 16; i++) {
331
                        intensity[i] = 255 - usrBOMvals[i];
332
                }
333
        } else {
334
                /* Collect new set of BOM data */
335
                bom_refresh(BOM_ALL);
336
                for (i = 0; i < 16; i++) {
337
                        intensity[i] = 255 - bom_get(i);
338
                }
339
        }
340

    
341
        /* Calculate weighted vector components and accumulate vector sum */
342
        for (i = 0; i < 16; i++) {
343
                weighted_x_comp[i] = intensity[i] * x_comp[i];
344
                weighted_y_comp[i] = intensity[i] * y_comp[i];
345
                net_x_comp += weighted_x_comp[i];
346
                net_y_comp += weighted_y_comp[i];
347
        }
348

    
349
        /* Fill the Vector struct */
350
        v->x = net_x_comp;
351
        v->y = net_y_comp;
352

    
353
        return 0;
354

    
355
}
356

    
357
/** 
358
 * Compute the normalized net resultant BOM IR vector by scaling each IR unit vector by its
359
 *                intensity and summing over all IR LEDs.
360
 *
361
 * @param v  Pointer to Vector struct to be filled by this function with an x and y net vector
362
 *                component.
363
 *
364
 * @param usrBOMvals  Pointer to array which holds 16 raw BOM readings which can be used if user
365
 *                has already collected BOM information instead of collecting a new data set from the BOM.
366
 *
367
 * @return  Exit status - Zero for success; negative on error.
368
 **/
369
int bom_get_norm_vector(Vector* v, int* usrBOMvals) {
370

    
371
        /* Store current BOM readings and use them as a weighting factor */
372
        int intensity[16] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
373

    
374
        /* Arrays for storing the weighted x ("Rightness") and y ("Forwardness")
375
         * components. Calculated by multiplying the intensity by the x and y
376
         * component respectively (x and y components are stored in the tables
377
         * above). */
378
        int weighted_x_comp[16] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
379
        int weighted_y_comp[16] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
380
        
381
        /* Accumulators to sum up the net x ("Rightness") and y ("Forwardness")
382
         * components for the entire robot. */
383
        long net_x_comp = 0;
384
        long net_y_comp = 0;
385

    
386
        /* Variables used to normalize the net component values */
387
        int total_intensity = 0;
388
        int normalized_net_x_comp = 0;
389
        int normalized_net_y_comp = 0;
390

    
391
        int i = 0;
392

    
393
        /* BOM intensity is actually measured as more intense = closer to 0 */
394
        if (usrBOMvals) {
395
                /* Use BOM values collected by user */
396
                for (i = 0; i < 16; i++) {
397
                        intensity[i] = 255 - usrBOMvals[i];
398
                }
399
        } else {
400
                /* Collect new set of BOM data */
401
                bom_refresh(BOM_ALL);
402
                for (i = 0; i < 16; i++) {
403
                        intensity[i] = 255 - bom_get(i);
404
                }
405
        }
406

    
407
        /* Calculate weighted vector components and accumulate vector sum */
408
        for (i = 0; i < 16; i++) {
409
                weighted_x_comp[i] = intensity[i] * x_comp[i];
410
                weighted_y_comp[i] = intensity[i] * y_comp[i];
411
                net_x_comp += weighted_x_comp[i];
412
                net_y_comp += weighted_y_comp[i];
413
                total_intensity += intensity[i];
414
        }
415

    
416
        /* Normalize the resultant vector components by the total intensity */
417
        if (total_intensity > 0) {
418
                normalized_net_x_comp = net_x_comp / total_intensity;
419
                normalized_net_y_comp = net_y_comp / total_intensity;
420
        }
421

    
422
        /* Fill the Vector struct */
423
        v->x = normalized_net_x_comp;
424
        v->y = normalized_net_y_comp;
425

    
426
        return 0;
427

    
428
}
429

    
430
/** 
431
 * Print a histogram which shows the current BOM intensity values for each of the 16 BOM IR
432
 *                sensors. The function will attempt to send the histogram data over USB.
433
 *
434
 * @param curBOMvals  Pointer to an array of the current BOM values (the array must have
435
 *                length 16). Use this to print values you have already collected. Otherwise pass in NULL
436
 *                and bom_refresh() will be called and the current BOM intensity values will be collected.
437
 * @return  Exit status - Zero for success; negative on error.
438
 **/
439
int bom_print_usb(int* usrBOMvals) {
440

    
441
        int i, j, max = -1;
442
        int curVals[16];
443
        int* prtValPtr;
444

    
445
        if (usrBOMvals) {
446
                /* Use BOM values collected by user */
447
                prtValPtr = usrBOMvals;
448

    
449
                /* Find max BOM value from users values */
450
                for (i = 0; i < 16; i++) {
451
                        if (max < prtValPtr[i])
452
                                max = prtValPtr[i];
453
                }
454
        } else {
455
                /* Refresh and make sure the table is updated */
456
                bom_refresh(BOM_ALL);
457

    
458
                /* Record values into an array */
459
                for (i = 0; i < 16; i++) {
460
                        curVals[i] = bom_get(i);
461
                        if (max < curVals[i])
462
                                max = curVals[i];
463
                }
464

    
465
                /* Use the current set of collected values */
466
                prtValPtr = curVals;
467
        }
468

    
469
        /* Display results */
470
        for (i = 0; i < 16; i++) {
471
                
472
                usb_puti(i);
473
                usb_puts(": ");
474
                usb_puti(prtValPtr[i]);
475
                usb_putc('\t');
476

    
477
                for (j = 0; j < (int)((max - prtValPtr[i]) / 5); j++) {
478
                        usb_putc('#');
479
                }
480
                usb_puts("\r\n");
481
        }
482
        usb_puts("\r\n");
483

    
484
        return 0;
485

    
486
}
487

    
488
/** 
489
 * Computes the weighted average of all the bom readings to estimate the position (and distance) of another robot.
490
 *
491
 * @pre must call bom refresh
492
 * @param dist  pointer to int in which to return the estimated distance to the other robot
493
 * @return estimated position of the max bom value element as a fixed point value analogous to 10 times the
494
 *        index of the max bom value.  -1 if no value is lower than BOM_VALUE_THRESHOLD.
495
 **/
496
int bom_get_max10(int *dist) {
497
    int i, max;
498
    long long mean = 0, sum = 0;
499

    
500
    max = bom_get_max();
501
    if (max < 0)
502
    {
503
        if (dist)
504
        {
505
            *dist = -1;
506
        }
507
        return -1;
508
    }
509
    /* Record values into an array */
510
    for (i = 0; i < NUM_BOM_LEDS; i++) {
511
        int idx = ((i + (NUM_BOM_LEDS/2 - max) + NUM_BOM_LEDS) % NUM_BOM_LEDS) - (NUM_BOM_LEDS/2 - max);
512
        int val = 255 - bom_val[i];
513
        mean += idx * val;
514
        sum += val;
515
    }
516
    mean = (mean * 10) / sum;
517
    mean = (mean + NUM_BOM_LEDS*10) % (NUM_BOM_LEDS*10);
518

    
519
    if (dist)
520
    {
521
        *dist = 50 - sum/48;
522
    }
523

    
524
    return mean;
525
}
526

    
527
/**
528
 * Iterates through each bit in the bit_field. If the bit is set, the corresponding emitter will
529
 *    be enabled to turn on when bom_on() is called.
530
 *    bom_init must be called for this to work. Does nothing if a BOM1.0 is installed
531
 *
532
 * @param bit_field specifies which leds should be turned on when bom_on is called.  Use BOM_ALL to turn on all bom leds.
533
 *    Ex. if 0x0005 is passed, leds 0 and 2 will be turned on.
534
 **/
535
void bom_set_leds(int bit_field) {
536
    int i;
537
        unsigned int mask = 1<<(NUM_BOM_LEDS-1);
538
        switch(bom_type) {
539
    case BOM10:
540
        //TODO: put an assert here to alert the user that this should not be called
541
        break;
542
                
543
    case BOM15:
544
            for(i=NUM_BOM_LEDS; i>0; i--)
545
            {
546
                    //set the current bit, sending MSB first
547
                    digital_output(BOM_DATA, bit_field&mask);
548
                    //then pulse the clock
549
                    digital_output(BOM_CLOCK, 1);
550
                    digital_output(BOM_CLOCK, 0);
551
                        mask = mask>>1;
552
            }
553
        break;
554
                
555
    case RBOM:
556
        //add rbom code here
557
        break;
558
    }
559
}
560

    
561

    
562
/**
563
 * (DEPRECATED) Returns the direction of the maximum BOM reading,
564
 * as an integer in the range 0-15. 0 indicates to the
565
 * robot's right, while the rest of the sensors are
566
 * numbered counterclockwise. This is useful for determining
567
 * the direction of a robot flashing its BOM, of only one
568
 * robot is currently doing so. analog_init must be called
569
 * before this function can be used.
570
 *
571
 * @return the direction of the maximum BOM reading
572
 *
573
 * @see analog_init
574
 **/
575
int get_max_bom(void) {
576
    bom_refresh(BOM_ALL);
577
    return bom_get_max();
578
}
579

    
580
/**
581
 * Flashes the BOM.  If using a BOM1.5, only the emitters that have been enabled using
582
 * bom_set_leds will turn on.
583
 * 
584
 * @see bom_off, bom_set_leds
585
 **/
586
void bom_on(void)
587
{
588
  switch(bom_type) {
589
  case BOM10:
590
        digital_output(MONKL, 1);
591
        break;
592
  case BOM15:
593
        digital_output(BOM_STROBE, 1);
594
        break;
595
  case RBOM:
596
        break;
597
  }
598
}
599

    
600
/**
601
 * Turns off all bom leds.
602
 * 
603
 * @see bom_on
604
 **/
605
void bom_off(void)
606
{
607
  switch(bom_type) {
608
  case BOM10:
609
        digital_output(MONKL, 0);
610
        break;
611
  case BOM15:
612
        digital_output(BOM_STROBE, 0);
613
        break;
614
  case RBOM:
615
        break;
616
  }
617
}
618

    
619
/** @} **/ //end group
620

    
621
//select a detector to read
622
static void bom_select(char which) {
623
        if(bom_type == BOM10)
624
          which = lookup[(int)which];
625
        
626
    if (which&8)
627
      digital_output(select_pins[3], 1);
628
    else
629
      digital_output(select_pins[3], 0);
630

    
631
    if (which&4)
632
      digital_output(select_pins[2], 1);
633
    else
634
      digital_output(select_pins[2], 0);
635

    
636
    if (which&2)
637
      digital_output(select_pins[1], 1);
638
    else
639
      digital_output(select_pins[1], 0);
640

    
641
    if (which&1)
642
      digital_output(select_pins[0], 1);
643
    else
644
      digital_output(select_pins[0], 0);
645
        
646
}