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Abstract

Research on mobile robot navigation has produced two ma-
jor paradigms for mapping indoor environments: grid-based
and topological. While grid-based methods produce accu-
rate metric maps, their complexity often prohibits efficient
planning and problem solving in large-scale indoor environ-
ments. Topological maps, on the other hand, can be used
much more efficiently, yet accurate and consistent topolog-
ical maps are considerably difficult to learn in large-scale
environments.
This paper describes an approach that integrates both
paradigms: grid-based and topological. Grid-based maps
are learned using artificial neural networks and Bayesian in-
tegration. Topological maps are generated on top of the
grid-based maps, by partitioning the latter into coherent
regions. By combining both paradigms—grid-based and
topological—, the approach presented here gains the best of
both worlds: accuracy/consistency and efficiency. The pa-
per gives results for autonomously operating a mobile robot
equipped with sonar sensors in populated multi-room envi-
ronments.

Introduction
To efficiently carry out complex missions in indoor environ-
ments, autonomous mobile robots must be able to acquire
and maintain models of their environments. The task of ac-
quiring models is difficult and far from being solved. The
following factors impose practical limitations on a robot’s
ability to learn and use accurate models:

1. Sensors. Sensors often are not capable to directly mea-
sure the quantity of interest (such as the exact location of
obstacles).

2. Perceptual limitations. The perceptual range of most
sensors is limited to a small range close to the robot.
To acquire global information, the robot has to actively
explore its environment.

3. Sensor noise. Sensor measurements are typically cor-
rupted by noise, the distribution of which is often un-
known (it is rarely Gaussian).

4. Drift/slippage. Robot motion is inaccurate. Odometric
errors accumulate over time.

5. Complexity and dynamics. Robot environments are
complex and dynamic, making it principally impossible
to maintain exact models.

6. Real-time requirements. Time requirements often de-
mand that the internal model must be simple and easily ac-
cessible. For example, fine-grain CAD models are often
disadvantageous if actions must be generated in real-time.

Recent research has produced two fundamental paradigms
for modeling indoor robot environments: the grid-based
(metric) paradigm and the topological paradigm. Grid-
based approaches, such as those proposed by Moravec/Elfes
(Moravec 1988) and many others, represent environments
by evenly-spaced grids. Each grid cell may, for exam-
ple, indicate the presence of an obstacle in the correspond-
ing region of the environment. Topological approaches,
such a those described in (Engelson & McDermott 1992;
Kortenkamp & Weymouth 1994; Kuipers & Byun 1990;
Matarić 1994; Pierce & Kuipers 1994), represent robot en-
vironments by graphs. Nodes in such graphs correspond to
distinct situations, places, or landmarks (such as doorways).
They are connected by arcs if there exists a direct path be-
tween them.

Both approaches to robot mapping exhibit orthogonal
strengths and weaknesses. Occupancy grids are considerably
easy to construct and to maintain even in large-scale envi-
ronments (Buhmann et al. 1995; Thrun & Bücken 1996).
Since the intrinsic geometry of a grid corresponds directly to
the geometry of the environment, the robot’s position within
its model can be determined by its position and orientation
in the real world—which, as shown below, can be deter-
mined sufficiently accurately using only sonar sensors, in
environments of moderate size. As a pleasing consequence,
different positions for which sensors measure the same values
(i.e., situations that look alike) are naturally disambiguated
in grid-based approaches. This is not the case for topological
approaches, which determine the position of the robot relative
to the model based on landmarks or distinct sensory features.
For example, if the robot traverses two places that look alike,
topological approaches often have difficulty determining if
these places are the same or not (particularly if these places
have been reached via different paths). Also, since sensory
input usually depends stronglyon the view-pointof the robot,
topological approaches may fail to recognize geometrically
nearby places.

On the other hand, grid-based approaches suffer from their
enormous space and time complexity. This is because the
resolution of a grid must be fine enough to capture every im-
portant detail of the world. Compactness in a key advantage
of topological representations. Topological maps are usu-
ally more compact, since their resolution is determined by
the complexity of the environment. Consequently, they per-
mit fast planning, facilitate interfacing to symbolic planners
and problem-solvers, and provide more natural interfaces for
human instructions. Since topological approaches usually



Grid-based approaches Topological approaches
�

easy to build, represent, and
maintain�
recognition of places (based on
geometry) is non-ambiguous
and view point-independent�
facilitates computation of
shortest paths

� planning inefficient, space-
consuming (resolution does not
depend on the complexity of
the environment)� requires accurate determina-
tion of the robot’s position� poor interface for most sym-
bolic problem solvers

�
permits efficient planning,
low space complexity (res-
olution depends on the com-
plexity of the environment)�
does not require accurate de-
termination of the robot’s
position�
convenient represen-
tation for symbolic planners,
problem solvers, natural lan-
guage interfaces� difficult to construct and
maintain in larger environ-
ments� recognition of places (based
on landmarks) often am-
biguous, sensitive to the
point of view� may yield suboptimal paths

Table 1: Comparison of grid-based and topological approaches to
map building.

do not require the exact determination of the geometric po-
sition of the robot, they often recover better from drift and
slippage—phenomena that must constantly be monitored and
compensated in grid-based approaches. To summarize, both
paradigms have orthogonal strengths and weaknesses, which
are summarized in Table 1.

This paper advocates to integrate both paradigms, to gain
the best of both worlds. The approach presented here com-
bines both grid-based (metric) and topological representa-
tions. To construct a grid-based model of the environment,
sensor values are interpreted by an artificial neural network
and mapped into probabilities for occupancy. Multiple in-
terpretations are integrated over time using Bayes’ rule. On
top of the grid representation, more compact topological
maps are generated by splitting the metric map into coher-
ent regions, separated through critical lines. Critical lines
correspond to narrow passages such as doorways. By parti-
tioning the metric map into a small number of regions, the
number of topological entities is several orders of magnitude
smaller than the number of cells in the grid representation.
Therefore, the integration of both representations has unique
advantages that cannot be found for either approach in iso-
lation: the grid-based representation, which is considerably
easy to construct and maintain in environments of moderate
complexity (e.g., 20 by 30 meters), models the world consis-
tently and disambiguates different positions. The topological
representation, which is grounded in the metric representa-
tion, facilitates fast planning and problem solving.

The robots used in our research are shown in Figure 1.
All robots are equipped with an array of 24 sonar sensors.
Throughout this paper, we will restrict ourselves to the inter-
pretation of sonar sensors, although the methods described
here have (in a prototype version) also been operated using
cameras and infrared light sensors in addition to sonar sen-
sors, using the image segmentation approach described in
(Buhmann et al. 1995). The approach proposed here has
extensively been tested in various indoor environments, and
is now distributed commercially by a leading mobile robot

Figure 1: The robots used in our research: RHINO (University of
Bonn), XAVIER, and AMELIA (both CMU).

manufacturer (Real World Interface, Inc.) as part of the reg-
ular navigation software.

Grid-Based Maps
The metric maps considered here are two-dimensional, dis-
crete occupancy grids, as originally proposed in (Elfes 1987;
Moravec 1988) and since implemented successfully in vari-
ous systems. Each grid-cell �������
	 in the map has an occu-
pancy value attached, which measures the subjective belief
whether or not the center of the robot can be moved to the
center of that cell (i.e., the occupancy map models the con-
figuration space of the robot, see e.g., (Latombe 1991)).
This section describes the four major components of our ap-
proach to building grid-based maps (see also (Thrun 1993)):
(1) sensor interpretation, (2) integration, (3) position esti-
mation, and (4) exploration. Examples of metric maps are
shown in various places in this paper.

Sensor Interpretation
To build metric maps, sensor reading must be “translated”
into occupancy values �
�����
� � for each grid cell �������
	 . The
idea here is to train an artificial neural network using Back-
Propagation to map sonar measurements to occupancy val-
ues. The input to the network consists of the four sensor
readings closest to ��������	 , along with two values that encode
��������	 in polar coordinates relative to the robot (angle to the
first of the four sensors, and distance). The output target
for the network is 1, if ��������	 is occupied, and 0 otherwise.
Training examples can be obtained by operating a robot in a
known environment and recording its sensor readings; notice
that each sonar scan can be used to construct many training
examples for different � - � coordinates. In our implemen-
tation, training examples are generated with a mobile robot
simulator.

Figure 2 shows three examples of sonar scans along with
their neural network interpretation. The darker a value in the
circular region around the robot, the larger the occupancy
value computed by the network. Figures 2a&b depict sit-
uations in a corridor. Situations such as the one shown in
Figure 2c—that defy simple interpretation—are typical for
cluttered indoor environments.

Integration Over Time
Sonar interpretations must be integrated over time, to yield a
single, consistent map. To do so, it is convenient to interpret
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Figure 2: Sensor interpretation: Three example sonar scans (top
row) and local occupancy maps (bottom row), generated by the
neural network.

the network’s output for the
�
-th sensor reading (denoted by������� ) as the probability that a grid cell ��������	 is occupied,

conditioned on the sensor reading � ����� :	�

� �
� � ��� �
� � �������
A map is obtained by integrating these probabilities for all
available sensor readings, denoted by � � 1 � � � � 2 � ������� � � ����� .
In other words, the desired occupancy value for each grid
call ��������	 can be expressed as the probability	�

� �
� � ��� �
� � � 1 � � � � 2 � ��������� � ������� �
which is conditioned on all sensor reading. A straightfor-
ward approach to estimating this quantity is to apply Bayes’
rule (Moravec 1988; Pearl 1988). To do so, one has to as-
sume independence of the noise in different readings. More
specifically, given the true occupancy of a grid cell �������
	 ,
the conditional probability

	�
�� � ����� � �
��� ��� � � must be assumed
to be independent of

	�
�� � ������� � �
��� �
� � � for
���� ���

. This as-
sumption is not implausible—in fact, it is commonly made in
approaches to building occupancy grids. The desired proba-
bility can now be computed as follows:	�
�� �
��� �
� � � � � 1 � � � � 2 � ��������� � ������� �
1 ! "

1 # 	�
�� � �
1 ! 	�
�� � � �$%'& 1

	�
�� �
�����
� � � � � % � �
1 ! 	�
�� �
������� � � � � % � � 1 ! 	�
�� � �	(
)� � �+*-, 1

Here
	(
)� � � denotes the prior probability for occupancy

(which, if set to 0.5, can be omitted in this equation). Notice
that this formula can be used to update occupancy values
incrementally. An example map of a competition ring con-
structed at the 1994 AAAI autonomous robot competition is
shown in Figure 3.

Position Estimation
The accuracy of the metric map depends crucially on the
alignment of the robot with its map. Unfortunately, slippage
and drift can have devastating effects on the estimation of
the robot position. Identifying and correcting for slippage
and drift is therefore imperative for grid-based approaches to
robot navigation (Feng,Borenstein, & Everett 1994; Rencken
1993).

Figure 4 gives an example that illustrates the importance
of position estimation in grid-based robot mapping. In Fig-
ure 4a, the position is determined solely based on dead-
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Figure 3: Grid-based map, constructed at the 1994 AAAI au-
tonomous mobile robot competition.

reckoning. After approximately 15 minutes of robot opera-
tion, the position error is approximately 11.5 meters. Obvi-
ously, the resulting map is too erroneous to be of practical
use. Figure 4b is the result of exploitingand integrating three
sources of information:

1. Wheel encoders. Wheel encoders measure the revolution
of the robot’s wheels. Based on their measurements,
odometry yields an estimate of the robot’s position at any
point in time. Odometry is very accurate over short time
intervals.

2. Map correlation. Whenever the robot interprets an ac-
tual sensor reading, it constructs a “local” map (such as
the ones shown in Figure 2). The correlation of the lo-
cal and the corresponding section of the global map is
a measure of their correspondence (Schiele & Crowley
1994). Thus, the correlation—which is a function of the
robot position—gives a second source of information for
estimating the robot’s position.

3. Wall orientation. The third source of information esti-
mates and memorizes the global wall orientation (Crow-
ley 1989; Hinkel & Knieriemen 1988). This approach
rests on the restrictive assumption that walls are either
parallel or orthogonal to each other, or differ by more
than 15 degrees from these canonical wall directions. In
the beginning of robot operation, the global orientation of
walls is estimated by searching straight line segments in
consecutive sonar measurements. Once the global wall
orientation has been estimated, it is used to readjust the
robot’s orientation based on future sonar measurements.

All three mechanisms basically provide a probability density
for the robot’s position (Thrun & Bücken 1996). Gradient
descent is then iterated to determine the most likely robot
position (in an any-time fashion). Notice that position con-
trol based on odometry and map correlation alone (items 1
and 2 above) works well if the robot travels through mapped
terrain, but seizes to function if the robot explores and maps
unknown terrain. The third mechanism, which arguably
relies on a restrictive assumption concerning the nature of
indoor environments, has proven extremely valuable when
autonomously exploring and mapping large-scale indoor en-
vironments.
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Figure 4: Map constructed without (a) and with (b) the position
estimation mechanism described in this paper.

Exploration

To autonomously acquire maps, the robot has to explore.
The idea for (greedy) exploration is to let the robot always
move on a minimum-cost path to the nearest unexplored grid
cell; The cost for traversing a grid cell is determined by
its occupancy value. The minimum-cost path is computed
using a modified version of value iteration, a popular dy-
namic programming algorithm (Howard 1960) (which bears
similarities to A* (Nilsson 1982)).

In a nutshell, starting at each unexplored grid-cell, value
iteration propagates values through the map. After conver-
gence, each value measures the cumulative costs for mov-
ing to the cost-nearest unexplored grid cell. Figure 5a
shows a value function after convergence. All white re-
gions are unexplored, and the grey-level indicates the cu-
mulative costs for moving towards the nearest unexplored
point. Notice that the all minima of the value function cor-
respond to unexplored regions—there are no local minima.
Once value iteration converges, greedy exploration simply
amounts to steepest descent in the value function, which
can be done very efficiently. Figure 5b, sketches the path
taken during approximately 15 minutes of autonomous ex-
ploration. The value function can, however, be used to gen-
erate motion control at any time (Dean & Boddy 1988),
long before dynamic programming converges. Value iter-
ation has the nice property that values are generated for
all cells in the grid, not just the current robot position.

start

robot
/

Figure 5: Autonomous exploration. (a) Exploration values, com-
puted by value iteration. White regions are completely unexplored.
By following the grey-scale gradient, the robot moves to the next
unexplored area on a minimum-cost path. (b) Actual path traveled
during autonomous exploration, along with the resulting metric
map. The large black rectangle in (a) indicates the global wall
orientation

�
wall.

Thus, if the robot has to change its path to avoid a colli-
sion with an unexpected obstacle, it can directly continue
exploration without further planning. During exploration,
the robot moves constantly, and frequently reaches a veloc-
ity of 80 to 90 cm/sec (see also (Buhmann et al. 1995;
Fox, Burgard, & Thrun 1995)).

In grid maps of size 30 by 30 meters, optimized value
iteration, done from scratch, requires approximately 2 to 10
seconds on a SUN Sparc station. For example, the planning
time in the map shown in Fig. 3 is typically under 2 seconds,
and re-planning (which becomes necessary when the map is
updated) is performed usually in a tenth of a second. In the
light of these results, one might be inclined to think that grid-
based maps are sufficient for autonomous robot navigation.
However, value iteration (and similar planning approaches)
require time quadratic in the number of grid cells, imposing
intrinsic scaling limitations that prohibit efficient planning in
large-scale domains. Due to their compactness, topological
maps scale much better to large environments. In what fol-
lows we will describe our approach for deriving topological
graphs from grid maps.

Topological Maps
Topological maps are built on top of the grid-based maps.
The key idea is simple but very effective: The free-space
of a grid-based map is partitioned into a small number of
regions, separated by critical lines. Critical lines correspond
to narrow passages such as doorways. The partitionedmap is
then mapped into a isomorphic graph. The precise algorithm
is illustrated in Figure 6, and works as follows:

1. Thresholding. Initially, each occupancy value in the
occupancy grid is thresholded. Cells whose occupancy
value is below the threshold are considered free-space
(denoted by � ). All other points are considered occupied
(denoted by ¯� ).
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Figure 6: Extracting topological maps. (a) Metric map, (b)
Voronoi diagram, (c) critical points, (d) critical lines, (e) topological
regions, and (f) the topological graph.

2. Voronoi diagram. For each point in free-space ��������	 �

� , there is one or more nearest point(s) in the occupied
space ¯� . We will call these points the basis points of
�������
	 , and the distance between �������
	 and its basis points
the clearance of ��������	 . The Voronoi diagram (Latombe
1991) is the set of points in free-space that have at least
two different (equidistant) basis-points (see Figure 6b).

3. Critical points. The key idea for partitioning the free-
space is to find “critical points.” Critical points ��������	
are points on the Voronoi diagram that minimize clear-
ance locally. In other words, each critical point ��������	
has the following two properties: (a) it is part of the
Voronoi diagram, and (b) the clearance of all points in
an � -neighborhood of ��������	 is not smaller. Figure 6c
illustrates critical points.

4. Critical lines. Critical lines are obtained by connecting
each critical point with its basis points (cf. Figure 6d).
Critical points have exactly two basis points (otherwise
they wouldnot be local minima of the clearance function).
Critical lines partition the free-space into disjoint regions
(see Figure 6e).

5. Topological graph. The partitioning is mapped into an
isomorphic graph. Each region corresponds to a node
in the topological graph, and each critical line to an arc.
Figure 6f shows an example of a topological graph.

Critical lines are motivated by two observations. Firstly,
when passing through a critical line, the robot is forced to
move in a considerably small region. Hence, the loss in per-
formance inferred by planning using the topological map (as
opposed to the grid-based map) is considerably small. Sec-
ondly, narrow regions are more likely blocked by obstacles
(such as doors, which can be open or closed).

Figure 7 illustrates the process of extracting a topological
map from the grid-based map depicted in Figure 3. Figure 7a
shows the Voronoi diagram of the thresholded map, and Fig-

(a) Voronoi diagram (b) Critical lines

(c) Topological regions (d) Topological graph

Figure 7: Extracting the topological graph from the map depicted
in Figure 3: (a) Voronoi diagram, (b) Critical points and lines, (c)
regions, and (d) the final graph.

ure 7b depicts the critical lines (the critical points are on the
intersections of critical lines and the Voronoi diagram). The
resulting partitioning and the topological graph are shown in
Figure 7c&d. As can be seen, the map has been partitioned
into 67 regions.

Performance Results

Topological maps are abstract representations of metric
maps. As is generally the case for abstract representations
and abstract problem solving, there are three criteria for as-
sessing the appropriateness of the abstraction: consistency,
loss, and efficiency. Two maps are consistent with each other
if every solution (plan) in one of the maps can be represented
as a solution in the other map. The loss measures the loss in
performance (path length), if paths are planned in the more
abstract, topological map as opposed to the grid-based map.
Efficiency measures the relative time complexity of problem
solving (planning). Typically, when using abstract models,
efficiency is traded off with consistency and performance
loss.

Consistency

The topological map is always consistent with the grid-based
map. For every abstract plan generated using the topologi-
cal map, there exists a corresponding plan in the grid-based
map (in other words, the abstraction has the downward solu-
tion property (Russell & Norvig 1995)). Conversely, every
path that can be found in the grid-based map has an abstract
representation which is a admissible plan in the topological
map (upward solution property). Notice that although con-
sistency appears to be a trivial property of the topological
maps, not every topological approach proposed in the lit-
erature generates maps that would be consistent with their
corresponding metric representation.
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Figure 8: Another example of a map.

Loss
Abstract representations—such as topological maps—lack
detail. Consequently, paths found in the topological map
may not be as short as paths found using the metric represen-
tation. To measure performance loss, we empirically com-
pared paths generated using the metric map shown in Figure
3 with those generated using the corresponding topological
map, shown in Figures 7d. Value iteration can be applied us-
ing both representations. In grid-based maps, value iteration
is applied just as described above. However, instead of plan-
ning paths to unexplored regions, paths were planned from a
particular start point to a particular goal point. To compare
the results to those obtained using topological representa-
tions, first the corresponding shortest path in the topological
graph was determined. Subsequently, the shortest path was
determined that followed exactly this topological plan. As a
result, the quality of topological plans can directly be com-
pared to those derived using the metric map.

We conducted a total of 23,881,062 experiments, each us-
ing a different starting and goal position that were generated
systematically with an evenly-spaced grid. The results are
intriguing. The average length of the shortest path is 15.88
meters. If robot motion is planned using the topologicalmap,
this path length increases on average only by 0.29 meters,
which is only 1.82% of the total path length. It is remarkable
that in 83.4% of all experiments, the topological planner re-
turns a loss-free plan. The largest loss that we found in our
experiments was 11.98 meters, which occurred in 6 of the
23,881,062 experiments. Figure 9a shows the average loss as
a function of the length of the shortest path. Figure 8 depicts
a different map. Here the loss is zero, since both maps are
free of cycles.

Efficiency
The most important advantage of topological planning lies
in its efficiency. Dynamic programming is quadratic in the
number of grid cells. The map shown in Figure 3 happens to
possess 27,280 explored cells. In the average case, the num-
ber of iterations of value iteration is roughly equivalent to the
length of the shortest path, which in our example map is 94.2
cells. Thus, in this example map, value iteration requires
on average 2 � 6 � 106 backups. Planning using the topological
representation is several orders of magnitudes more efficient.
The average topological path length is 7.84. Since the topo-
logical graph shown in Figure 7d has 67 nodes, topological
planning requires on average 525 backups. Notice the enor-
mous gain in efficiency! Planning using the metric map is
4 � 9 � 103 more expensive than planning with the topological
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Figure 9: Loss, as a function of optimal path length.

map. In other words, planning on the topological level in-
creases the efficiency by more than three orders of magnitude,
while inducing a performance loss of only 1.82%.

The map shown in Figure 8, which is smaller but was
recoded with a higher resolution, consists of 20,535 explored
grid cells and 22 topological regions. On average, paths
in the grid-based map lead through 84.8 cells, while the
average length of a topological plan is 4.82 (averaged over
1,928,540 systematically generated pairs of points). Here
the complexity reduction is even larger. Planning using the
metric map is 1 � 6 � 104 more expensive than planning with
the topological map. While these numbers are empirical and
only correct for the particular maps investigated here, we
conjecture that the relative quotient is roughly correct for
other maps as well.

It should be noted that the compactness topological maps
allows us to exhaustively pre-compute and memorize all
plans connecting two nodes. Our example maps contain
67 (22) nodes, hence there are only 2,211 (231) different
plans that are easily generated and memorized. If a new path
planning problem arrives, topological planning amounts to
looking up the correct plan.

The reader may also notice that topological plans often do
not directly translate into motion commands. In (Thrun &
Bücken 1996), a local “triplet planner” is described, which
generates cost-optimal plans for triplets of adjacent topo-
logical regions. As shown there, triplet plans can also be
pre-computed exhaustively, but they are not necessarily op-
timal, hence cause some small additional performance loss
(1.42% and 1.19% for the maps investigated here).

Discussion
This paper proposes an integrated approach to mapping in-
door robot environments. It combines the two major ex-
isting paradigms: grid-based and topological. Grid-based
maps are learned using artificial neural networks and Bayes’
rule. Topological maps are generated by partitioning the
grid-based map into critical regions.

Building occupancy maps is a fairly standard procedure,
which has proven to yield robust maps at various research
sites. To the best of our knowledge, the maps exhibited in
this paper are significantly larger than maps constructed from
sonar sensors by other researchers. The most important as-
pect of this research, however, is the way topological graphs
are constructed. Previous approaches have constructed topo-
logical maps from scratch, memorizing only partial metric
information along the way. This often led to problems of dis-
ambiguation (e.g., different places that look alike), and prob-
lems of establishing correspondence (e.g., different views of
the same place). This paper advocates to integrate both, grid-
based and topological maps. As a direct consequence, differ-



ent places are naturally disambiguated, and nearby locations
are detected as such. In the integrated approach, landmarks
play only an indirect role, through the grid-based positiones-
timation mechanisms. Integration of landmark information
over multiple measurements at multiple locations is auto-
matically done in a consistent way. Visual landmarks, which
often come to bear in topological approaches, can certainly be
incorporated into the current approach, to further improve the
accuracy of position estimation. In fact, sonar sensors can be
understood as landmark detectors that indirectly—through
the grid-based map—help determine the actual position in
the topological map (cf. (Simmons & Koenig 1995)).

One of the key empirical results of this research con-
cerns the cost-benefit analysis of topological representations.
While grid-based maps yield more accurate control, planning
with more abstract topologicalmaps is several orders of mag-
nitude more efficient. A large series of experiments showed
that in a map of moderate size, the efficiency of planning can
be increased by three to four orders of magnitude, while the
loss in performance is negligible (e.g., 1.82%). We believe
that the topological maps described here will enable us to
control an autonomous robot in multiple floors in our univer-
sity building—complex mission planning in environments
of that size was completely intractable with our previous
methods.

A key disadvantage of grid-based methods, which is inher-
ited by the approach presented here, is the need for accurately
determining the robot’s position. Since the difficulty of po-
sition control increases with the size of the environment, one
might be inclined to think that grid-based approaches gener-
ally scale poorly to large-scale environments (unless they are
provided with an accurate map). Although this argument is
convincing, we are optimistic concerning the scaling proper-
ties of the approach taken here. The largest cycle-free map
that was generated with this approach was approximately
100 meters long; the largest single cycle measured approx-
imately 58 by 20 meters. We are not aware of any purely
topological approach to robot mapping that would have been
demonstrated to be capable of producing consistent maps of
comparable size. Moreover, by using more accurate sensors
(such as laser range finders), and by re-estimating robot po-
sitions backwards in time (which would be mathematically
straightforward, but is currently not implemented because
of its enormous computational complexity), we believe that
maps can be learned and maintained for environments that
are an order of magnitude larger than those investigated here.
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