
Version 1.0    
  9/10/2010 

Page 1 of 9 

AeroQuad Flight Software  
Developer’s Guide 

Introduction 
The AeroQuad Flight Software uses a mixture of C/C++ to accommodate multiple hardware options and 

algorithms within the Arduino platform.  The motivation behind using a mixture of C/C++ is to find the 

right balance between flexibility and commonality within the restrictive programming space and 

processing speed of a microcontroller environment.  This also allows the end user to have a methodical 

way to add new hardware capabilities with minimal impact to the existing flight algorithms.  As a result 

upgrading to new improved hardware sensors can be done easily and a clear defined method for users 

to customize and improve the flight software itself can be achieved.  The purpose of this guide is to 

document the software architecture implemented, provide a description of what each component does, 

and to give a guideline on how to contribute new features for the future. 

The software architecture documented here is considered a work in progress.  With the possibility of 

larger and faster processors available in the future and with the general understanding and experience 

in using Object Oriented programming in the AeroQuad community, a more comprehensive C++ 

architecture can be developed.  This current architecture is considered a learning step in this direction. 

The AeroQuad Flight Software is provided as an open source project written within the Arduino 

development environment.  Where possible it uses the Arduino libraries, but may rely on low level 

ATmega microcontroller programming for optimization of certain functions. 

Download Software 
The latest version of the Flight Software can be downloaded from: 

http://code.google.com/p/aeroquad/downloads/list 

If you wish to locate an older version of the software, follow the link above and in the Search pull down 

menu, select “deprecated downloads”. 

Software Support 
The best place to get quick feedback or to discuss the flight software on-line is at the AeroQuad forums: 

http://aeroquad.com/forum.php 

There is a flight software specific board at: 

http://aeroquad.com/forumdisplay.php?7-AeroQuad-Flight-Software 

http://code.google.com/p/aeroquad/downloads/list
http://aeroquad.com/forum.php
http://aeroquad.com/forumdisplay.php?7-AeroQuad-Flight-Software


Version 1.0    
  9/10/2010 

Page 2 of 9 

Software Architecture 
Each of the main functions depicted in dark blue in Figure 1 are kept in Arduino sketches (.pde files).  

Class definitions are placed in header files (.h) and are depicted in light blue.  Header files will typically 

have the main class (for example Gyro) at the top of the header file and all available subclasses (such as 

Gyro:Gyro_AeroQuad_v2.0) will be listed underneath it.  The following sections will describe each main 

function and any supporting header files needed. 

 
Figure 1- Software Architecture 

AeroQuad.pde 
The AeroQuad.pde sketch contains the setup and main loop of the flight software.  It’s primary 

responsibility is to maintain the timing that each of the main functions are to execute at. 

SerialCom.pde 
This sketch receives external serial commands and responds to telemetry requests. 

FlightCommand.pde 
FlightCommand.pde is responsible for decoding transmitter stick combinations and for setting up 

AeroQuad modes such as motor arming/disarming and Acro/Stable flight modes.  This function relies on 

Receiver.h for receiving radio controlled signals from the pilot.  Future classes are planned to receive 

pilot commands over wireless link from a laptop or mobile device. 



Version 1.0    
  9/10/2010 

Page 3 of 9 

Sensors.pde 
The Sensors.pde sketch is responsible for taking on-board sensor measurements and calculating flight 

attitude.  The following header files are used by Sensors.pde: 

 DataAcquisition.h – container for certain hardware configurations where a common sensor 

measurement call is needed.  Examples of this are I2C communication for Wii sensors, SPI ADC 

communication for the APM and APM IMU Sensor. 

 Filter.h – contains a simple low pass filter to remove noise from sensor measurements 

 Accel.h – defines how to measure accelerometer data and convert to engineering units 

 Gyro.h – defines how to measure gyro data and convert to engineering units 

 GPS.h – defines how to communicate with a GPS and decode NMEA strings 

 FlightAngle.h – contains multiple algorithms to calculate multicopter vehicle attitude 

 Compass.h – defines how to measure magnetometer or similar sensor data 

 Distance.h – defines how to measure sonar or IR data 

 Altitude.h – defines how to measure barometer or similar sensor data 

FlightControl.pde 
This sketch combines sensor measurements and transmitter commands into motor commands for the 

defined flight configuration (X, +, etc.).  The following header files are used by FlightControl.pde 

 PID.h – contains the PID implementation used for control of the multicopter 

 Motors.h – defines which motor control method is used (for example PWM or I2C). 



Version 1.0    
  9/10/2010 

Page 4 of 9 

Class Definitions 
This section will describe each class defined in the AeroQuad Flight Software.  Any new subclasses must 

conform to the methods (or function calls) defined in the main class.  The header files are listed in 

alphabetical order below.  Each section will list the available methods or function calls used by the flight 

software.  If any new functions are required for a main class, please submit requests to the AeroQuad 

Google Code issue tracking list at: http://code.google.com/p/aeroquad/issues/list 

Please note:  Only header files that defines a class used within the flight software are listed below.  

There are several header files found in the top level architecture that contain functions not organized as 

a class.  This was done since they typically just contain a single function call. 

Accel.h 
This class defines how the flight software interacts with an accelerometer.  The following function calls 

must be re-defined in each subclass: 

 initialize() – initializes how the microcontroller reads measurements from the accelerometer 

 measure() – performs sensor measurement from the accelerometer 

 getFlightData(axis) – returns modified raw sensor data for use in control algorithms 

The following function calls are common to all accelerometer objects: 

 _initialize(roll channel, pitch channel, Z axis channel) – reads accelerometer calibration data 

(used to center measurements around zero) and where applicable assigns A/D channels to each 

axis 

 getRaw(axis) – returns the A/D value centered around zero.  

 getData(axis) – returns the A/D value centered around zero with smoothing applied 

 invert(axis) – execute once to invert the accelerometer axis 

 getZero(axis) – returns the raw A/D value that defines zero output from the accelerometer 

 setZero(axis) – stores a new A/D value that defines zero output from the accelerometer 

 getScaleFactor() – returns the scale factor used to convert A/D measurements to G 

 getSmoothFactor(factor) – gets the smoothing factor used for low pass filtering (values between 

0 and 1, with 1 defining no filtering used) 

 setSmoothFactor(factor) – sets the smoothing factor used for low pass filtering of sensor data 

 angleRad(axis) – returns the angle in radians that is calculated for the desired axis 

 angleDeg(axis) – returns the angle in degress that is calculated for the desired axis 

Altitude.h 
Not yet implemented in the v2.0 flight software. 

Compass.h 
Not yet implemented in the v2.0 flight software. 

http://code.google.com/p/aeroquad/issues/list


Version 1.0    
  9/10/2010 

Page 5 of 9 

Distance.h 
Not yet implemented in the v2.0 flight software. 

FlightAngle.h 
This class defines how to calculate vehicle attitude.  The following function calls must be re-defined in 

each subclass: 

 initialize() – initializes the starting values required to calculate attitude 

 calculate() – returns the vehicle attitude 

 getGyroAngle(axis) – returns the estimated angle calculated from gyro data  

(verify if can be deleted) 

The following function calls are common to all accelerometer objects: 

 getData(axis) – returns the calculated angle for the requested axis 

 getType() – returns the angle estimation algorithm used data (verify if can be deleted) 

GPS.h 
Under Construction 

Gyro.h 
This class defines how the flight software interacts with a gyro.  The following function calls must be re-

defined in each subclass: 

 initialize() – initializes how the microcontroller reads measurements from the gyro 

 measure() – performs sensor measurement from the gyro 

 autoZero() – measures the A/D value that corresponds to a zero angular rate 

 getFlightData(axis) – returns modified raw sensor data for use in control algorithms 

The following function calls are common to all gyro objects: 

 _initialize(roll channel, pitch channel, Z axis channel) – reads gyro calibration data (used to 

center measurements around zero) and where applicable assigns A/D channels to each axis 

 getRaw(axis) – returns the A/D value centered around zero.  

 getData(axis) – returns the A/D value centered around zero with smoothing applied 

 invert(axis) – execute once to invert the accelerometer axis 

 setData(axis) – sets gyroData[axis] (verify if can be deleted) 

 getZero(axis) – returns the raw A/D value that defines zero output from the gyro 

 setZero(axis) – stores a new A/D value that defines zero output from the gyro 

 getScaleFactor() – returns the scale factor used to convert A/D measurements to G 

 getSmoothFactor(factor) – gets the smoothing factor used for low pass filtering (values between 

0 and 1, with 1 defining no filtering used) 

 setSmoothFactor(factor) – sets the smoothing factor used for low pass filtering of sensor data 



Version 1.0    
  9/10/2010 

Page 6 of 9 

 rateDegPerSec(axis) – returns the angular rate in degrees/sec that is calculated for the desired 

axis 

 rateRadPerSec(axis) – returns the angular rate in radians/sec that is calculated for the desired 

axis 

Motors.h 
This class defines the method to use for motor control.  The following function calls must be re-defined 

in each subclass: 

 initialize() – initializes motor control 

 write() – commands each motor to values set by setMotorCommand(motor, value) 

 commandAllMotors(value) – command all motors to the same value 

The following function calls are common to all motor objects: 

 setRemoteCommand(motor, value) – sets the value sent to motor over serial command 

 getRemoteCommand(motor) – gets the value sent from a serial command 

 getMotorSlope() – returns the slope (y=mx+b) of equation used to convert PWM to PPM duty 

cycle for motor command using analogWrite() (verify if can be deleted) 

 getMotorOffset() – returns offset (y=mx+b) of equation used to convert PWM to PPM duty cycle 

for motor command using analogWrite() (verify if can be deleted) 

 setMinCommand(motor, value) – sets the minimum allowable command to send to the motor 

 getMinCommand(motor) – gets the minimum value that can be sent to the motor 

 setMaxCommand(motor, value) – sets the maximum allowable command to send to the motor 

 getMaxCommand(motor) – gets the maximum value that can be sent to the motor 

 setMotorAxisCommand(axis, value) – sets the motor command to send for the specified axis.  

This is calculated from the PID for a specific axis. 

 getMotorAxisCommand(motor) – gets the motor command for the specified axis 

 setMotorCommand(motor, value) – commands the actual motor command to send to each 

motor.  This is calculated using a combination of getMotorAxisCommand() values and the motor 

configuration that is setup (+, X, etc.) 

 getMotorCommand(motor) – gets the value command for the specified motor 

 setThrottle(value) – sets the throttle value used for the mixer table 

 getThrottle() – gets the throttle value used for the mixer table 

Receiver.h 
This class defines the method to use for decoding R/C receiver data.  The following function calls must 

be re-defined in each subclass: 

 initialize() – initializes receiver decode 

 read() – reads R/C receiver data for all channels, scales it using y=mx+b, smooths it, and reduces 

it by the transmitter factor (defined from the Configurator) and centers it around zero (with the 

exception of throttle, gear and aux channels) 



Version 1.0    
  9/10/2010 

Page 7 of 9 

The following function calls are common to all motor objects: 

 _initialize() – loads in all calibration values and all smoothing values for each receiver channel 

 getRaw(channel) – returns the receiver value scaled by y=mx+b for the specified channel 

 getData(channel) – returns the smoothed receiver value which is  reduced by the transmitter 

factor defined from the Configurator for the specified channel 

 getZero(channel) – returns the value that represents zero pilot input (verify if can be deleted) 

 setZero(channel, value) – sets the value that represents zero pilot input (verify if can be deleted) 

 getSmoothFactor(channel) – get the smooth value applied for the specified channel 

 setSmoothFactor(channel) – sets the smoothing value applied for the specified channel 

 getXmitFactor() – gets the value used to make pilot input less sensitive 

 setXmitFactor(value) – sets the value to use to make the pilot input less sensitive 

 getTransmitterSlope(channel) – gets the slope (y=mx+b) used to scale the receiver input to 

1000-2000 microseconds (PWM) 

 setTransmitterSlope(channel, value) – sets the slope used to scale receiver input.  This is defined 

from transmitter calibration of the Configurator 

 getTransmitterOffset(channel) – gets the offset (y=mx+b) used to scale the receiver input to 

1000-2000 microseconds (PWM) 

 setTransmitterOffset(channel, value) – sets the offset used to scale receiver input.  This is 

defined from transmitter calibration of the Configurator 

 getAngle(channel) – converts the roll/pitch/yaw stick inputs to represent +/-45 degrees 



Version 1.0    
  9/10/2010 

Page 8 of 9 

Customizing Code 
If you wish to add new functionality for an existing class or to create a new class, use the following 

templates so that new objects can be added using a common method.  If we use a similar method for 

adding new software functions, it will be easier for all contributing developers to read through the code 

and debug as necessary.  Also, please place any new classes inside its own header file (.h) with the same 

name as the main class.   Include all it’s subclasses at the end of the header file. 

What would be considered a class or a subclass? As an example, in general multicopters need to have a 

gyro for basic flight.  You may want to have support for a gyro that has an analog output, or a gyro that 

uses I2C.  So in this case we would create a class called gyro, then the subclasses could be called 

gyroAnalog and gyroI2C.  The gyro class would contain function calls common to both the subclasses , 

like calculateRate(), while the subclasses would have the specific function calls for measuring analog 

input data or retrieving I2C data.  Refer to the previous section (Class Definitions) for specific examples 

of classes and subclasses. 

Class Example / Template 
class exampleClass { 

public: 

  int exampleVariable; 

  float exampleData[3]; 

  exampleClass(void) { 

    // this is the constructor of the object and must have the same name 

    // can be used to initialize any of the variables declared above  

  } 

  // ********************************************************************** 

  // The following function calls must be defined inside any new subclasses 

  // ********************************************************************** 

  virtual void initialize(void);  

  virtual void exampleFunction(int); 

  virtual const int getExampleData(byte); 

  // ********************************************************* 

  // The following functions are common between all subclasses 

  // ********************************************************* 

  void examplePublicFunction(byte axis, int value) { 

    // insert common code here 

  } 

  const int getPublicData(byte axis) { 

    return exampleData[axis]; 

  } 

}; 



Version 1.0    
  9/10/2010 

Page 9 of 9 

Sub Class Example / Template 
class exampleSubClass : public exampleClass { 

private: 

  int exampleArray[3];  // only for use inside this subclass 

  int examplePrivateData; // only for use inside this subclass 

  void examplePrivateFunction(int functionVariable) { 

    // it’s possible to declare functions just for this subclass 

  } 

public: 

  exampleSubClass() : exampleClass(){ 

    // this is the constructor of the object and must have the same name 

    // can be used to initialize any of the variables declared above 

  } 

  // *********************************************************** 

  // Define all the virtual functions declared in the main class 

  // *********************************************************** 

  void initialize(void) { 

    // insert code here 

  } 

  void exampleFunction(int someVariable) { 

    // insert code here 

    examplePrivateFunction(someVariable); 

  } 

  const int getExampleData(byte axis) { 

    // insert code here 

    return exampleArray[axis]; 

  } 

}; 

How to Use an Object 
After you create your classes and subclasses, they can be called in the code as follows: 

#include “exampleHeader.h” 

exampleSubClass objectName; 

int data = 0; 

int output; 

objectName.initialize(); 

objectName.exampleFunction(data); 

output = objectName.getExampleData(data); 


