Subversion and Git



Problems with “Sneakernet”

-Hard to keep everyone in sync

-ard to keep a log of what/why changes were made

mpossible to roll back to a previous version



Solution: Revision Control

 Two paradigms: Centralized and Decentralized

 Basic idea: track changes to a code project over time, and
be able to share those changes



Centralized Revision Control

 Basic |ldea: code exists on a server, you can get some
revision of it, work on it, and push your updates back to
the server.

» Advantages

* \lery easy to understand
 \ery standard

 Implementations: CVS, Subversion, etc



Terminology*

 Checkout: get a fresh copy of code from a server
 Update: get the most recent copy of code from the server
« Commit: send a set of changes to the server

« Commit Message: a sentence or two describing what's in
your commit

o Diff: a standard file format (.diff, .patch) for storing
changes between two files (or sets of files)

*Subversion terminology!



Subversion

e Checkout

* svn co svn+ssh://username @host/path/to/repo [./localname]
 Other protocols are svn://, http://, and https:/

« Update
¢ SVN Up

 Run in your local copy (or any subdirectory of your local copy)
 You can use svn up -rREV to “update” to a past revision REV

*You can use “checkout” instead of “co” and “update” instead of “up”... but why would you?



Subversion

« Add

e svnadd
« “Adding” files lets subversion keep track of them
e Delete

« svnrm/svn del
« Deletes a file from being tracked under subversion
« ALSO NUKES YOUR LOCAL COPY

o Status

e svn status
 Shows you what files have been changed, added, or deleted



Subversion

e Commit

* SVN Cl

e This will prompt you to enter a commit message

e You can also specify svn ci -m “message” on the command line
 History

* svnlog

« Show the commit history for a project



Subversion

e Diff
e svn diff

By default, the differences between your local copy and the most
recent revision

 Useful for seeing what changes you've made
* Revert
e svnrevert.
 Roll back your changes
« BE CAREFUL, YOU CAN'T [easily] UNDO THIS



Subversion Conventions

 Three directories in a repository

e /trunk

- “Bleeding edge”: it probably works

— Not suitable for release
 /tag

- Copies of code marked as “stable” at some point in time
e /branch

- Copies of code that have been taken in a slightly different direction

* You probably only care about /trunk at this point



Why Subversion Sucks

* Network reliant

 You need a server to do anything
o Centralized

* |f the server goes down, what do you do?
* Big

* You only store one revision of the code on your computer at a
time



Decentralized (Distributed) Revision Control

 Basic Idea: track changes (and commits) separately from
sharing those changes

« Committing changes and pushing them to the server are
different operations

« Commit lots of times (microcommitting), Push once
(“atomic commit” paradigm)



Git

 Developed by Linus Torvalds

 You may know him better for “Linux”

o Written to track the Linux Kernel Sources



Git Terminology

Clone: get a fresh copy from the server
Pull: get changes from the server

Commit: make a record of your changes

Push: save that record of changes to the server

Branch: make a “branch” in the history of a file: change a file
in an alternate source tree

Merge: combine a branch back in to the tree

Checkout;: like subversion's revert



Git

e Clone

e git clone https://user@url/path/to/repo
o Pull

e it pull
o Commit
e git commit

* You must specify which files you want to commit (-a for all changed
files)

* You can specify the commit message with -m (like svn)



Git

e Push
e it push

 Branch
« Make a new branch: git branch <branchname>
« Switch to a branch: git checkout <branchname>
« Commit like normal in the new branch

o Default branch is called “master”

« Delete a branch with git branch -d <branchname> (after merging in your
changes)

 “Hard delete” a branch with git branch -D <branchname> (dangerous!)



Git

* Merge
e (it merge <branchname>

» Merges a branch called <branchname> into the current one
o @it will try to auto-merge changes, and will tell you when it can't

e Checkout

 Change to a fresh copy of a branch

 “fresh copy” can mean a new branch or a clean copy of an old
one



Git

* Logging
e (it log
 Show the history of your tree
* There are some neat options for this

o Status/Info

e (it status
- Like svn status
e gitinfo

- @ives you information about the repository



Remember

* Ask for help
 RTFM

 Google is your friend



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

